Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1992 May;174(9):2865–2873. doi: 10.1128/jb.174.9.2865-2873.1992

Effect of 6-thioguanine on Chlamydia trachomatis growth in wild-type and hypoxanthine-guanine phosphoribosyltransferase-deficient cells.

B Qin 1, G McClarty 1
PMCID: PMC205938  PMID: 1569017

Abstract

Chlamydiae have evolved a biphasic life cycle to facilitate their survival in two discontinuous habitats. The unique growth cycle is represented by two alternating forms of the organism, the elementary body and the reticulate body. Chlamydiae have an absolute nutritional dependency on the host cell to provide ribonucleoside triphosphates and other essential intermediates of metabolism. This report describes the pleiotropic effects of the purine antimetabolite 6-thioguanine on chlamydial replication. In order to display cytotoxicity, 6-thioguanine must first be converted to the nucleotide level by the host cell enzyme hypoxanthine-guanine phosphoribosyltransferase. Our results show that 6-thioguanine is an effective inhibitor of chlamydial growth with either wild-type or hypoxanthine-guanine phosphoribosyltransferase-deficient cell lines as the host. Interestingly, the mechanism of 6-thioguanine-induced inhibition of chlamydial growth is different depending on which cell line is used. With wild-type cells as the host, the cytotoxic effects of 6-thioguanine on chlamydial growth are relatively fast and irreversible. Under these circumstances, cytotoxicity likely results from the combined effect of starving chlamydiae for purine ribonucleotides and incorporation of host-derived 6-thioguanine-containing nucleotides into chlamydial nucleic acids. With hypoxanthine-guanine phosphoribosyltransferase-deficient cells as the host, 6-thioguanine must be present at the start of the chlamydial infection cycle to be effective and the growth inhibition is reversible upon removal of the antimetabolite. These findings suggest that in hypoxanthine-guanine phosphoribosyltransferase-deficient cells, the free base 6-thioguanine may inhibit the differentiation of elementary bodies to reticulate bodies. With hypoxanthine-guanine phosphoribosyltransferase-deficient cells as the host, 6-thioguanine was used as a selective agent in culture to isolate a Chlamydia trachomatis isolate resistant to the effects of the drug. This drug resistant C. trachomatis isolate was completely resistant to 6-thioguanine in hypoxanthine-guanine phosphoribosyltransferase-deficient cells; however, it displayed wildtype sensitivity to 6-thioguanine when cultured in wild-type host cells.

Full text

PDF
2865

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander J. J. Separation of protein synthesis in meningopneumonitisgent from that in L cells by differential susceptibility to cycloheximide. J Bacteriol. 1968 Feb;95(2):327–332. doi: 10.1128/jb.95.2.327-332.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BENNETT L. L., Jr, SMITHERS D., WARD C. T. INHIBITION OF DNA SYNTHESIS IN MAMMALIAN CELLS BY ACTIDIONE. Biochim Biophys Acta. 1964 May 18;87:60–69. doi: 10.1016/0926-6550(64)90047-7. [DOI] [PubMed] [Google Scholar]
  3. Barranco S. C., Humphrey R. M. The effects of beta-2'-deoxythioguanosine on survival and progression in mammalian cells. Cancer Res. 1971 May;31(5):583–586. [PubMed] [Google Scholar]
  4. Carrico C. K., Sartorelli A. C. Effects of 6-thioguanine on RNA biosynthesis in regenerating rat liver. Cancer Res. 1977 Jun;37(6):1876–1882. [PubMed] [Google Scholar]
  5. Ceballos M. M., Hatch T. P. Use of HeLa cell guanine nucleotides by Chlamydia psittaci. Infect Immun. 1979 Jul;25(1):98–102. doi: 10.1128/iai.25.1.98-102.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cheng H. W., Armstrong R. D., Sadée W. Modulation of 6-thioguanine activity by guanine in human promyelocytic leukemia HL-60 cells. Cancer Res. 1988 Jul 1;48(13):3648–3651. [PubMed] [Google Scholar]
  7. Elion G. B. Symposium on immunosuppressive drugs. Biochemistry and pharmacology of purine analogues. Fed Proc. 1967 May-Jun;26(3):898–904. [PubMed] [Google Scholar]
  8. Fan H. Z., McClarty G., Brunham R. C. Biochemical evidence for the existence of thymidylate synthase in the obligate intracellular parasite Chlamydia trachomatis. J Bacteriol. 1991 Nov;173(21):6670–6677. doi: 10.1128/jb.173.21.6670-6677.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Farkas W. R., Jacobson K. B., Katze J. R. Substrate and inhibitor specificity of tRNA-guanine ribosyltransferase. Biochim Biophys Acta. 1984 Feb 24;781(1-2):64–75. doi: 10.1016/0167-4781(84)90124-6. [DOI] [PubMed] [Google Scholar]
  10. Fraiz J., Jones R. B. Chlamydial infections. Annu Rev Med. 1988;39:357–370. doi: 10.1146/annurev.me.39.020188.002041. [DOI] [PubMed] [Google Scholar]
  11. Gusella J. F., Housman D. Induction of erythroid differentiation in vitro by purines and purine analogues. Cell. 1976 Jun;8(2):263–269. doi: 10.1016/0092-8674(76)90010-6. [DOI] [PubMed] [Google Scholar]
  12. Hatch T. P., Al-Hossainy E., Silverman J. A. Adenine nucleotide and lysine transport in Chlamydia psittaci. J Bacteriol. 1982 May;150(2):662–670. doi: 10.1128/jb.150.2.662-670.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hatch T. P. Utilization of L-cell nucleoside triphosphates by Chlamydia psittaci for ribonucleic acid synthesis. J Bacteriol. 1975 May;122(2):393–400. doi: 10.1128/jb.122.2.393-400.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Henderson J. F., Caldwell I. C., Paterson A. R. Decreased feedback inhibition in a 6-(methylmercapto)purine ribonucleoside-resistant tumor. Cancer Res. 1967 Oct;27(10):1773–1778. [PubMed] [Google Scholar]
  15. Ishiguro K., Schwartz E. L., Sartorelli A. C. Characterization of the metabolic forms of 6-thioguanine responsible for cytotoxicity and induction of differentiation of HL-60 acute promyelocytic leukemia cells. J Cell Physiol. 1984 Nov;121(2):383–390. doi: 10.1002/jcp.1041210216. [DOI] [PubMed] [Google Scholar]
  16. Kretz K. A., Katze J. R., Trewyn R. W. Guanine analog-induced differentiation of human promyelocytic leukemia cells and changes in queuine modification of tRNA. Mol Cell Biol. 1987 Oct;7(10):3613–3619. doi: 10.1128/mcb.7.10.3613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. MCCOLLISTER R. J., GILBERT W. R., Jr, ASHTON D. M., WYNGAARDEN J. B. PSEUDOFEEDBACK INHIBITION OF PURINE SYNTHESIS BY 6-MERCAPTOPURINE RIBONUCLEOTIDE AND OTHER PURINE ANALOGUES. J Biol Chem. 1964 May;239:1560–1563. [PubMed] [Google Scholar]
  18. Maybaum J., Mandel H. G. Unilateral chromatid damage: a new basis for 6-thioguanine cytotoxicity. Cancer Res. 1983 Aug;43(8):3852–3856. [PubMed] [Google Scholar]
  19. Mayer R. J. Current chemotherapeutic treatment approaches to the management of previously untreated adults with de novo acute myelogenous leukemia. Semin Oncol. 1987 Dec;14(4):384–396. [PubMed] [Google Scholar]
  20. McClarty G., Tipples G. In situ studies on incorporation of nucleic acid precursors into Chlamydia trachomatis DNA. J Bacteriol. 1991 Aug;173(16):4922–4931. doi: 10.1128/jb.173.16.4922-4931.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Moulder J. W. Interaction of chlamydiae and host cells in vitro. Microbiol Rev. 1991 Mar;55(1):143–190. doi: 10.1128/mr.55.1.143-190.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nelson J. A., Carpenter J. W., Rose L. M., Adamson D. J. Mechanisms of action of 6-thioguanine, 6-mercaptopurine, and 8-azaguanine. Cancer Res. 1975 Oct;35(10):2872–2878. [PubMed] [Google Scholar]
  23. Plagemann P. G., Wohlhueter R. M., Woffendin C. Nucleoside and nucleobase transport in animal cells. Biochim Biophys Acta. 1988 Oct 11;947(3):405–443. doi: 10.1016/0304-4157(88)90002-0. [DOI] [PubMed] [Google Scholar]
  24. Schachter J., Caldwell H. D. Chlamydiae. Annu Rev Microbiol. 1980;34:285–309. doi: 10.1146/annurev.mi.34.100180.001441. [DOI] [PubMed] [Google Scholar]
  25. Schachter J. The intracellular life of Chlamydia. Curr Top Microbiol Immunol. 1988;138:109–139. [PubMed] [Google Scholar]
  26. Schwartz E. L., Ishiguro K., Sartorelli A. C. Induction of leukemia cell differentiation by chemotherapeutic agents. Adv Enzyme Regul. 1983;21:3–20. doi: 10.1016/0065-2571(83)90005-5. [DOI] [PubMed] [Google Scholar]
  27. Speed R. R., Winkler H. H. Acquisition of thymidylate by the obligate intracytoplasmic bacterium Rickettsia prowazekii. J Bacteriol. 1991 Mar;173(5):1704–1710. doi: 10.1128/jb.173.5.1704-1710.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tipples G., McClarty G. Isolation and initial characterization of a series of Chlamydia trachomatis isolates selected for hydroxyurea resistance by a stepwise procedure. J Bacteriol. 1991 Aug;173(16):4932–4940. doi: 10.1128/jb.173.16.4932-4940.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Winkler H. H. Rickettsia species (as organisms). Annu Rev Microbiol. 1990;44:131–153. doi: 10.1146/annurev.mi.44.100190.001023. [DOI] [PubMed] [Google Scholar]
  30. Winkler H. H., Turco J. Rickettsia prowazekii and the host cell: entry, growth and control of the parasite. Curr Top Microbiol Immunol. 1988;138:81–107. [PubMed] [Google Scholar]
  31. Wotring L. L., Roti Roti J. L. Thioguanine-induced S and G2 blocks and their significance to the mechanism of cytotoxicity. Cancer Res. 1980 May;40(5):1458–1462. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES