Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1992 Jan;105(1):27–36. doi: 10.1111/j.1476-5381.1992.tb14206.x

Pharmacological characterization of RP 62203, a novel 5-hydroxytryptamine 5-HT2 receptor antagonist

A Doble, D Girdlestone, O Piot, D Allam, J Betschart, A Boireau, A Dupuy, C Guérémy, J Ménager, JL Zundel, JC Blanchard
PMCID: PMC1908636  PMID: 1596688

Abstract

1 RP 62203 (2-[3-(4-(4-fluorophenyl)-piperazinyl)propyl]naphto[1,8-cd]isothiazole-1, 1-dioxide) is a novel naphtosultam derivative which shows very high affinity for 5-HT2 receptors in the rat cerebral cortex (Ki = 50.0 pM).

2 RP 62203 is relatively selective for this sub-type of 5-hydroxytryptamine (5-HT) receptor, having lower affinity for the 5-HT1A receptor and very low affinity for the 5-HT3 receptor. RP 62203 displayed low to moderate affinity for α1-adrenoceptors, dopamine D2 receptors and histamine H1 receptors.

3 In vivo binding experiments demonstrated that oral administration of low doses of RP 62203 led to a long-lasting (>6h) occupation of cortical 5-HT2 receptors (ID50 = 0.39 mg kg-1).

4 In cortical slices from the neonatal rat, RP 62203 potently inhibited inositol phosphate formation evoked by 5-HT, with an IC50 of 7.76 nM.

5 The activity of neurones in the raphé and their responses to microiontophoretically applied 5-HT were studied with extracellular recording electrodes in the anaesthetized rat. RP 62203 potently and dose-dependently blocked excitations evoked by 5-HT when administered at doses of 0.5–4.0 mg kg-1, i.p. In contrast, neither 5-HT-evoked depressions nor glutamate-evoked excitations of raphé neuronal firing were blocked by RP 62203 at doses as high as 8.0 mg kg-1, i.p.

6 Head twitches induced by 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) could be abolished by low doses of RP 62203 in mice (ED50 = 0.44 mg kg-1, p.o.) and in rats (ED50 = 1.54 p.o.). Similar results were obtained with mescaline and 5-hydroxytryptophan (5-HTP).

7 The potency of RP 62203 was compared with that of three other 5-HT2 receptor antagonists, ritanserin, ICI 169,369 and ICI 170,809. In all models, RP 62203 showed similar activity to ritanserin, whilst either ICI 169,369 or ICI 170,809 was several fold less active.

8 It is concluded that RP 62203 is a potent and selective antagonist at 5-HT2 receptors in the rodent central nervous system.

Keywords: 5-Hydroxytryptamine, 5-HT2 receptor antagonists, RP 62203, binding, inositol phosphate, raphé, neuronal activity, head-twitch

Full text

PDF
27

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aghajanian G. K. Serotonin-induced inward current in rat facial motoneurons: evidence for mediation by G proteins but not protein kinase C. Brain Res. 1990 Jul 30;524(1):171–174. doi: 10.1016/0006-8993(90)90509-a. [DOI] [PubMed] [Google Scholar]
  2. Andrade R., Nicoll R. A. Pharmacologically distinct actions of serotonin on single pyramidal neurones of the rat hippocampus recorded in vitro. J Physiol. 1987 Dec;394:99–124. doi: 10.1113/jphysiol.1987.sp016862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berridge M. J., Downes C. P., Hanley M. R. Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochem J. 1982 Sep 15;206(3):587–595. doi: 10.1042/bj2060587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blackburn T. P., Cox B., Thornber C. W., Pearce R. J. Pharmacological studies in vivo with ICI 169,369, a chemically novel 5-HT2/5-HT1C receptor antagonist. Eur J Pharmacol. 1990 May 16;180(2-3):229–237. doi: 10.1016/0014-2999(90)90306-q. [DOI] [PubMed] [Google Scholar]
  5. Blackburn T. P., Thornber C. W., Pearce R. J., Cox B. In vitro studies with ICI 169,369, a chemically novel 5-HT antagonist. Eur J Pharmacol. 1988 Jun 10;150(3):247–256. doi: 10.1016/0014-2999(88)90005-2. [DOI] [PubMed] [Google Scholar]
  6. Bradley P. B., Engel G., Feniuk W., Fozard J. R., Humphrey P. P., Middlemiss D. N., Mylecharane E. J., Richardson B. P., Saxena P. R. Proposals for the classification and nomenclature of functional receptors for 5-hydroxytryptamine. Neuropharmacology. 1986 Jun;25(6):563–576. doi: 10.1016/0028-3908(86)90207-8. [DOI] [PubMed] [Google Scholar]
  7. Brown E., Kendall D. A., Nahorski S. R. Inositol phospholipid hydrolysis in rat cerebral cortical slices: I. Receptor characterisation. J Neurochem. 1984 May;42(5):1379–1387. doi: 10.1111/j.1471-4159.1984.tb02798.x. [DOI] [PubMed] [Google Scholar]
  8. Bylund D. B., Snyder S. H. Beta adrenergic receptor binding in membrane preparations from mammalian brain. Mol Pharmacol. 1976 Jul;12(4):568–580. [PubMed] [Google Scholar]
  9. CORNE S. J., PICKERING R. W., WARNER B. T. A method for assessing the effects of drugs on the central actions of 5-hydroxytryptamine. Br J Pharmacol Chemother. 1963 Feb;20:106–120. doi: 10.1111/j.1476-5381.1963.tb01302.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Canton H., Verrièle L., Colpaert F. C. Binding of typical and atypical antipsychotics to 5-HT1C and 5-HT2 sites: clozapine potently interacts with 5-HT1C sites. Eur J Pharmacol. 1990 Nov 20;191(1):93–96. doi: 10.1016/0014-2999(90)94100-c. [DOI] [PubMed] [Google Scholar]
  11. Claustre Y., Rouquier L., Scatton B. Pharmacological characterization of serotonin-stimulated phosphoinositide turnover in brain regions of the immature rat. J Pharmacol Exp Ther. 1988 Mar;244(3):1051–1056. [PubMed] [Google Scholar]
  12. Corne S. J., Pickering R. W. A possible correlation between drug-induced hallucinations in man and a behavioural response in mice. Psychopharmacologia. 1967;11(1):65–78. doi: 10.1007/BF00401509. [DOI] [PubMed] [Google Scholar]
  13. Critchley M. A., Handley S. L. Effects in the X-maze anxiety model of agents acting at 5-HT1 and 5-HT2 receptors. Psychopharmacology (Berl) 1987;93(4):502–506. doi: 10.1007/BF00207243. [DOI] [PubMed] [Google Scholar]
  14. Davie M., Wilkinson L. S., Roberts M. H. Evidence for excitatory 5-HT2-receptors on rat brainstem neurones. Br J Pharmacol. 1988 Jun;94(2):483–491. doi: 10.1111/j.1476-5381.1988.tb11551.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Davies M. F., Deisz R. A., Prince D. A., Peroutka S. J. Two distinct effects of 5-hydroxytryptamine on single cortical neurons. Brain Res. 1987 Oct 13;423(1-2):347–352. doi: 10.1016/0006-8993(87)90861-4. [DOI] [PubMed] [Google Scholar]
  16. Dugovic C., Wauquier A. 5-HT2 receptors could be primarily involved in the regulation of slow-wave sleep in the rat. Eur J Pharmacol. 1987 May 7;137(1):145–146. doi: 10.1016/0014-2999(87)90196-8. [DOI] [PubMed] [Google Scholar]
  17. Frenken M., Kaumann A. J. Dimethylation of the activator ICI 169,369 results in a high-affinity partial deactivator, ICI 170,809, of the arterial 5-hydroxytryptamine2 receptor system. J Pharmacol Exp Ther. 1989 Aug;250(2):707–713. [PubMed] [Google Scholar]
  18. Frost J. J., Smith A. C., Kuhar M. J., Dannals R. F., Wagner H. N., Jr In vivo binding of 3H-N-methylspiperone to dopamine and serotonin receptors. Life Sci. 1987 Mar 9;40(10):987–995. doi: 10.1016/0024-3205(87)90321-3. [DOI] [PubMed] [Google Scholar]
  19. Galizzi J. P., Fosset M., Lazdunski M. [3H] verapamil binding sites in skeletal muscle transverse tubule membranes. Biochem Biophys Res Commun. 1984 Jan 13;118(1):239–245. doi: 10.1016/0006-291x(84)91092-1. [DOI] [PubMed] [Google Scholar]
  20. Goodwin G. M., Green A. R. A behavioural and biochemical study in mice and rats of putative selective agonists and antagonists for 5-HT1 and 5-HT2 receptors. Br J Pharmacol. 1985 Mar;84(3):743–753. doi: 10.1111/j.1476-5381.1985.tb16157.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Green A. R., O'Shaughnessy K., Hammond M., Schächter M., Grahame-Smith D. G. Inhibition of 5-hydroxytryptamine-mediated behaviour by the putative 5-HT2 antagonist pirenperone. Neuropharmacology. 1983 May;22(5):573–578. doi: 10.1016/0028-3908(83)90147-8. [DOI] [PubMed] [Google Scholar]
  22. Greengrass P., Bremner R. Binding characteristics of 3H-prazosin to rat brain alpha-adrenergic receptors. Eur J Pharmacol. 1979 May 1;55(3):323–326. doi: 10.1016/0014-2999(79)90202-4. [DOI] [PubMed] [Google Scholar]
  23. Habert E., Graham D., Tahraoui L., Claustre Y., Langer S. Z. Characterization of [3H]paroxetine binding to rat cortical membranes. Eur J Pharmacol. 1985 Nov 26;118(1-2):107–114. doi: 10.1016/0014-2999(85)90668-5. [DOI] [PubMed] [Google Scholar]
  24. Hall M. D., el Mestikawy S., Emerit M. B., Pichat L., Hamon M., Gozlan H. [3H]8-hydroxy-2-(di-n-propylamino)tetralin binding to pre- and postsynaptic 5-hydroxytryptamine sites in various regions of the rat brain. J Neurochem. 1985 Jun;44(6):1685–1696. doi: 10.1111/j.1471-4159.1985.tb07155.x. [DOI] [PubMed] [Google Scholar]
  25. Hoyer D., Engel G., Kalkman H. O. Characterization of the 5-HT1B recognition site in rat brain: binding studies with (-)[125I]iodocyanopindolol. Eur J Pharmacol. 1985 Nov 26;118(1-2):1–12. doi: 10.1016/0014-2999(85)90657-0. [DOI] [PubMed] [Google Scholar]
  26. Hoyer D., Middlemiss D. N. Species differences in the pharmacology of terminal 5-HT autoreceptors in mammalian brain. Trends Pharmacol Sci. 1989 Apr;10(4):130–132. doi: 10.1016/0165-6147(89)90159-4. [DOI] [PubMed] [Google Scholar]
  27. Hoyer D. Molecular pharmacology and biology of 5-HT1C receptors. Trends Pharmacol Sci. 1988 Mar;9(3):89–94. doi: 10.1016/0165-6147(88)90174-5. [DOI] [PubMed] [Google Scholar]
  28. Hoyer D., Pazos A., Probst A., Palacios J. M. Serotonin receptors in the human brain. I. Characterization and autoradiographic localization of 5-HT1A recognition sites. Apparent absence of 5-HT1B recognition sites. Brain Res. 1986 Jun 18;376(1):85–96. doi: 10.1016/0006-8993(86)90902-9. [DOI] [PubMed] [Google Scholar]
  29. Hoyer D., Pazos A., Probst A., Palacios J. M. Serotonin receptors in the human brain. II. Characterization and autoradiographic localization of 5-HT1C and 5-HT2 recognition sites. Brain Res. 1986 Jun 18;376(1):97–107. doi: 10.1016/0006-8993(86)90903-0. [DOI] [PubMed] [Google Scholar]
  30. Idzikowski C., Mills F. J., Glennard R. 5-Hydroxytryptamine-2 antagonist increases human slow wave sleep. Brain Res. 1986 Jul 16;378(1):164–168. doi: 10.1016/0006-8993(86)90299-4. [DOI] [PubMed] [Google Scholar]
  31. Kilpatrick G. J., Jones B. J., Tyers M. B. Identification and distribution of 5-HT3 receptors in rat brain using radioligand binding. Nature. 1987 Dec 24;330(6150):746–748. doi: 10.1038/330746a0. [DOI] [PubMed] [Google Scholar]
  32. Kosterlitz H. W., Paterson S. J., Robson L. E. Characterization of the kappa-subtype of the opiate receptor in the guinea-pig brain. Br J Pharmacol. 1981 Aug;73(4):939–949. doi: 10.1111/j.1476-5381.1981.tb08749.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Laduron P. M., Janssen P. F., Gommeren W., Leysen J. E. In vitro and in vivo binding characteristics of a new long-acting histamine H1 antagonist, astemizole. Mol Pharmacol. 1982 Mar;21(2):294–300. [PubMed] [Google Scholar]
  34. Lee C. M., Javitch J. A., Snyder S. H. 3h-substance P binding to salivary gland membranes. Regulation by guanyl nucleotides and divalent cations. Mol Pharmacol. 1983 May;23(3):563–569. [PubMed] [Google Scholar]
  35. Leysen J. E., Gommeren W., Van Gompel P., Wynants J., Janssen P. F., Laduron P. M. Receptor-binding properties in vitro and in vivo of ritanserin: A very potent and long acting serotonin-S2 antagonist. Mol Pharmacol. 1985 Jun;27(6):600–611. [PubMed] [Google Scholar]
  36. Leysen J. E., Niemegeers C. J., Van Nueten J. M., Laduron P. M. [3H]Ketanserin (R 41 468), a selective 3H-ligand for serotonin2 receptor binding sites. Binding properties, brain distribution, and functional role. Mol Pharmacol. 1982 Mar;21(2):301–314. [PubMed] [Google Scholar]
  37. Leysen J. Problems in in vitro receptor binding studies and identification and role of serotonin receptor sites. Neuropharmacology. 1984 Feb;23(2B):247–254. doi: 10.1016/0028-3908(84)90066-2. [DOI] [PubMed] [Google Scholar]
  38. Lum J. T., Piercey M. F. Electrophysiological evidence that spiperone is an antagonist of 5-HT1A receptors in the dorsal raphe nucleus. Eur J Pharmacol. 1988 Apr 27;149(1-2):9–15. doi: 10.1016/0014-2999(88)90035-0. [DOI] [PubMed] [Google Scholar]
  39. Manning D. C., Vavrek R., Stewart J. M., Snyder S. H. Two bradykinin binding sites with picomolar affinities. J Pharmacol Exp Ther. 1986 May;237(2):504–512. [PubMed] [Google Scholar]
  40. McPherson G. A. Analysis of radioligand binding experiments. A collection of computer programs for the IBM PC. J Pharmacol Methods. 1985 Nov;14(3):213–228. doi: 10.1016/0160-5402(85)90034-8. [DOI] [PubMed] [Google Scholar]
  41. Mylecharane E. J. The classification of 5-hydroxytryptamine receptors. Clin Exp Pharmacol Physiol. 1989 Jun;16(6):517–522. doi: 10.1111/j.1440-1681.1989.tb01598.x. [DOI] [PubMed] [Google Scholar]
  42. North R. A., Uchimura N. 5-Hydroxytryptamine acts at 5-HT2 receptors to decrease potassium conductance in rat nucleus accumbens neurones. J Physiol. 1989 Oct;417:1–12. doi: 10.1113/jphysiol.1989.sp017786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Paiva T., Arriaga F., Wauquier A., Lara E., Largo R., Leitao J. N. Effects of ritanserin on sleep disturbances of dysthymic patients. Psychopharmacology (Berl) 1988;96(3):395–399. doi: 10.1007/BF00216069. [DOI] [PubMed] [Google Scholar]
  44. Pauwels P. J., Leysen J. E., Laduron P. M. [3H]Batrachotoxinin A 20-alpha-benzoate binding to sodium channels in rat brain: characterization and pharmacological significance. Eur J Pharmacol. 1986 May 27;124(3):291–298. doi: 10.1016/0014-2999(86)90230-x. [DOI] [PubMed] [Google Scholar]
  45. Peroutka S. J., Lebovitz R. M., Snyder S. H. Two distinct central serotonin receptors with different physiological functions. Science. 1981 May 15;212(4496):827–829. doi: 10.1126/science.7221567. [DOI] [PubMed] [Google Scholar]
  46. Robberecht P., De Neef P., Lammens M., Deschodt-Lanckman M., Christophe J. P. Specific binding of vasoactive intestinal peptide to brain membranes from the guinea pig. Eur J Biochem. 1978 Sep 15;90(1):147–154. doi: 10.1111/j.1432-1033.1978.tb12585.x. [DOI] [PubMed] [Google Scholar]
  47. Rouot B. R., Snyder S. H. [3H]Para-amino-clonidine: a novel ligand which binds with high affinity to alpha-adrenergic receptors. Life Sci. 1979 Aug 27;25(9):769–774. doi: 10.1016/0024-3205(79)90521-6. [DOI] [PubMed] [Google Scholar]
  48. Saito A., Goldfine I. D., Williams J. A. Characterization of receptors for cholecystokinin and related peptides in mouse cerebral cortex. J Neurochem. 1981 Aug;37(2):483–490. doi: 10.1111/j.1471-4159.1981.tb00481.x. [DOI] [PubMed] [Google Scholar]
  49. Schotte A., Leysen J. E., Laduron P. M. Evidence for a displaceable non-specific [3H]neurotensin binding site in rat brain. Naunyn Schmiedebergs Arch Pharmacol. 1986 Aug;333(4):400–405. doi: 10.1007/BF00500016. [DOI] [PubMed] [Google Scholar]
  50. Shannon M., Battaglia G., Glennon R. A., Titeler M. 5-HT1 and 5-HT2 binding properties of derivatives of the hallucinogen 1-(2,5-dimethoxyphenyl)-2-aminopropane (2,5-DMA). Eur J Pharmacol. 1984 Jun 15;102(1):23–29. doi: 10.1016/0014-2999(84)90333-9. [DOI] [PubMed] [Google Scholar]
  51. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  52. Speth R. C., Wastek G. J., Johnson P. C., Yamamura H. I. Benzodiazepine binding in human brain: characterization using [3H]flunitrazepam. Life Sci. 1978 Mar;22(10):859–866. doi: 10.1016/0024-3205(78)90610-0. [DOI] [PubMed] [Google Scholar]
  53. Torrens Y., Daguet De Montety M. C., el Etr M., Beaujouan J. C., Glowinski J. Tachykinin receptors of the NK1 type (substance P) coupled positively to phospholipase C on cortical astrocytes from the newborn mouse in primary culture. J Neurochem. 1989 Jun;52(6):1913–1918. doi: 10.1111/j.1471-4159.1989.tb07276.x. [DOI] [PubMed] [Google Scholar]
  54. Tran V. T., Beal M. F., Martin J. B. Two types of somatostatin receptors differentiated by cyclic somatostatin analogs. Science. 1985 Apr 26;228(4698):492–495. doi: 10.1126/science.2858917. [DOI] [PubMed] [Google Scholar]
  55. Ugedo L., Grenhoff J., Svensson T. H. Ritanserin, a 5-HT2 receptor antagonist, activates midbrain dopamine neurons by blocking serotonergic inhibition. Psychopharmacology (Berl) 1989;98(1):45–50. doi: 10.1007/BF00442004. [DOI] [PubMed] [Google Scholar]
  56. Undén A., Tatemoto K., Mutt V., Bartfai T. Neuropeptide Y receptor in the rat brain. Eur J Biochem. 1984 Dec 17;145(3):525–530. doi: 10.1111/j.1432-1033.1984.tb08588.x. [DOI] [PubMed] [Google Scholar]
  57. Urwyler S., Coward D. Binding of 3H-spiperone and 3H-(-)-sulpiride to dopamine D2 receptors in rat striatal membranes: methodological considerations and demonstration of the identical nature of the binding sites for the two ligands. Naunyn Schmiedebergs Arch Pharmacol. 1987 Feb;335(2):115–122. doi: 10.1007/BF00177711. [DOI] [PubMed] [Google Scholar]
  58. Vignon J., Chicheportiche R., Chicheportiche M., Kamenka J. M., Geneste P., Lazdunski M. [3H]TCP: a new tool with high affinity for the PCP receptor in rat brain. Brain Res. 1983 Nov 28;280(1):194–197. doi: 10.1016/0006-8993(83)91193-9. [DOI] [PubMed] [Google Scholar]
  59. Yamamura H. I., Snyder S. H. Muscarinic cholinergic binding in rat brain. Proc Natl Acad Sci U S A. 1974 May;71(5):1725–1729. doi: 10.1073/pnas.71.5.1725. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES