Skip to main content
Immunology logoLink to Immunology
. 1992 May;76(1):48–54.

Paradoxical stimulation and inhibition by protein kinase C modulating agents of lipopolysaccharide evoked production of tumour necrosis factor in human monocytes.

R G Coffey 1, L L Weakland 1, V A Alberts 1
PMCID: PMC1421742  PMID: 1628900

Abstract

Human blood monocytes were activated by bacterial lipopolysaccharide endotoxin (LPS) (10 ng/ml) for cytotoxicity of WEHI-164 mouse fibrosarcoma cells, determined by release of 51Cr from WEHI-164 tumour cells incubated with monocyte supernatants. The chemotactic peptide N-formylmethionyl-leucyl-phenylalanine (FMLP) augmented LPS-induced cytotoxicity but had no effect alone. FMLP but not LPS stimulated phospholipase C (PLC), determined by the release of [3H]inositol phosphates. Addition of tumour promoter and protein kinase C stimulant, phorbol-12-myristate-13-acetate (PMA) at concentrations of 3 x 10(-10) M to 3 x 10(-9) M, resulted in an augmentation of 30-200% in LPS-evoked cytotoxicity. The effects of FMLP and PMA, like the effect of LPS alone, were completely blocked by antibody to recombinant human tumour necrosis factor-alpha (TNF-alpha), indicating that cytotoxicity induced by LPS, FMLP, and PMA were due solely to TNF release. Concentrations of PMA greater than 3 x 10(-9) M caused inhibition of TNF release. Okadaic acid (20 ng/ml), an inhibitor of phosphatases I and IIa, augmented the effects of LPS and the stimulatory effects of low levels of PMA, suggesting that phosphorylation was important in the actions of both LPS and PMA. The effects of LPS and of low levels of PMA were augmented by the protein kinase C (PKC) inhibitors H-7 (10-30 microM), staurosporine (2-10 nM) and calphostin C (0.1 microM). Higher concentrations of the inhibitors prevented LPS-evoked TNF release and its augmentation by low levels of PMA. However, they did not prevent the inhibition by high levels of PMA. One possible explanation for the results is that different isozymes of PKC may mediate the stimulatory as compared to the inhibitory effects of PKC on TNF production.

Full text

PDF
48

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balsinde J., Fernández B., Diez E. Regulation of arachidonic acid release in mouse peritoneal macrophages. The role of extracellular calcium and protein kinase C. J Immunol. 1990 Jun 1;144(11):4298–4304. [PubMed] [Google Scholar]
  2. Bankey P., Carlson A., Ortiz M., Singh R., Cerra F. Tumor necrosis factor production by Kupffer cells requires protein kinase C activation. J Surg Res. 1990 Sep;49(3):256–261. doi: 10.1016/0022-4804(90)90130-t. [DOI] [PubMed] [Google Scholar]
  3. Berridge M. J. Inositol trisphosphate and diacylglycerol as second messengers. Biochem J. 1984 Jun 1;220(2):345–360. doi: 10.1042/bj2200345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beutler B., Cerami A. Cachectin and tumour necrosis factor as two sides of the same biological coin. Nature. 1986 Apr 17;320(6063):584–588. doi: 10.1038/320584a0. [DOI] [PubMed] [Google Scholar]
  5. Cannistra S. A., Rambaldi A., Spriggs D. R., Herrmann F., Kufe D., Griffin J. D. Human granulocyte-macrophage colony-stimulating factor induces expression of the tumor necrosis factor gene by the U937 cell line and by normal human monocytes. J Clin Invest. 1987 Jun;79(6):1720–1728. doi: 10.1172/JCI113012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chen A. R., McKinnon K. P., Koren H. S. Lipopolysaccharide (LPS) stimulates fresh human monocytes to lyse actinomycin D-treated WEHI-164 target cells via increased secretion of a monokine similar to tumor necrosis factor. J Immunol. 1985 Dec;135(6):3978–3987. [PubMed] [Google Scholar]
  7. Chung T., Kim Y. B. Two distinct cytolytic mechanisms of macrophages and monocytes activated by phorbol myristate acetate. J Leukoc Biol. 1988 Nov;44(5):329–336. doi: 10.1002/jlb.44.5.329. [DOI] [PubMed] [Google Scholar]
  8. Cleaveland J. S., Kiener P. A., Hammond D. J., Schacter B. Z. A microtiter-based assay for the detection of protein tyrosine kinase activity. Anal Biochem. 1990 Nov 1;190(2):249–253. doi: 10.1016/0003-2697(90)90188-f. [DOI] [PubMed] [Google Scholar]
  9. Coffey R. G., Alberts V. A., Weakland L. L. Prostaglandin-dependent desensitization of human monocyte cAMP responses. J Leukoc Biol. 1990 Dec;48(6):557–564. doi: 10.1002/jlb.48.6.557. [DOI] [PubMed] [Google Scholar]
  10. Cohen P., Holmes C. F., Tsukitani Y. Okadaic acid: a new probe for the study of cellular regulation. Trends Biochem Sci. 1990 Mar;15(3):98–102. doi: 10.1016/0968-0004(90)90192-e. [DOI] [PubMed] [Google Scholar]
  11. Cooper D. R., Ishizuka T., Watson J. E., Standaert M. L., Nair G., Farese R. V. Protein kinase C activation patterns are determined by methodological variations. Studies of insulin action in BC3H-1 myocytes and rat adipose tissue. Biochim Biophys Acta. 1990 Aug 13;1054(1):95–102. doi: 10.1016/0167-4889(90)90210-5. [DOI] [PubMed] [Google Scholar]
  12. Cooper D. R., Watson J. E., Acevedo-Duncan M., Pollet R. J., Standaert M. L., Farese R. V. Retention of specific protein kinase C isozymes following chronic phorbol ester treatment in BC3H-1 myocytes. Biochem Biophys Res Commun. 1989 May 30;161(1):327–334. doi: 10.1016/0006-291x(89)91600-8. [DOI] [PubMed] [Google Scholar]
  13. Farese R. V. Phosphoinositide metabolism and hormone action. Endocr Rev. 1983 Winter;4(1):78–95. doi: 10.1210/edrv-4-1-78. [DOI] [PubMed] [Google Scholar]
  14. Gladwin A. M., Hassall D. G., Martin J. F., Booth R. F. MAC-1 mediates adherence of human monocytes to endothelium via a protein kinase C dependent mechanism. Biochim Biophys Acta. 1990 Apr 9;1052(1):166–172. doi: 10.1016/0167-4889(90)90072-l. [DOI] [PubMed] [Google Scholar]
  15. Hassan N. F., Kamani N., Meszaros M. M., Douglas S. D. Induction of multinucleated giant cell formation from human blood-derived monocytes by phorbol myristate acetate in in vitro culture. J Immunol. 1989 Oct 1;143(7):2179–2184. [PubMed] [Google Scholar]
  16. Hidaka H., Inagaki M., Kawamoto S., Sasaki Y. Isoquinolinesulfonamides, novel and potent inhibitors of cyclic nucleotide dependent protein kinase and protein kinase C. Biochemistry. 1984 Oct 9;23(21):5036–5041. doi: 10.1021/bi00316a032. [DOI] [PubMed] [Google Scholar]
  17. Higuchi M., Higashi N., Taki H., Osawa T. Cytolytic mechanisms of activated macrophages. Tumor necrosis factor and L-arginine-dependent mechanisms act synergistically as the major cytolytic mechanisms of activated macrophages. J Immunol. 1990 Feb 15;144(4):1425–1431. [PubMed] [Google Scholar]
  18. Keisari Y., Bucana C., Markovich S., Campbell D. E. Interaction between human peripheral blood monocytes and tumor promoters: effect on growth differentiation and function in vitro. J Biol Response Mod. 1990 Aug;9(4):401–410. [PubMed] [Google Scholar]
  19. Kobayashi E., Nakano H., Morimoto M., Tamaoki T. Calphostin C (UCN-1028C), a novel microbial compound, is a highly potent and specific inhibitor of protein kinase C. Biochem Biophys Res Commun. 1989 Mar 15;159(2):548–553. doi: 10.1016/0006-291x(89)90028-4. [DOI] [PubMed] [Google Scholar]
  20. Koren H. S., Herberman R. B. The current status of human monocyte-mediated cytotoxicity against tumor cells. J Leukoc Biol. 1985 Sep;38(3):441–445. doi: 10.1002/jlb.38.3.441. [DOI] [PubMed] [Google Scholar]
  21. Kornbluth R. S., Edgington T. S. Tumor necrosis factor production by human monocytes is a regulated event: induction of TNF-alpha-mediated cellular cytotoxicity by endotoxin. J Immunol. 1986 Oct 15;137(8):2585–2591. [PubMed] [Google Scholar]
  22. Kovacs E. J., Radzioch D., Young H. A., Varesio L. Differential inhibition of IL-1 and TNF-alpha mRNA expression by agents which block second messenger pathways in murine macrophages. J Immunol. 1988 Nov 1;141(9):3101–3105. [PubMed] [Google Scholar]
  23. Kozumbo W. J., Muehlematter D., Jörg A., Emerit I., Cerutti P. Phorbol ester-induced formation of clastogenic factor from human monocytes. Carcinogenesis. 1987 Apr;8(4):521–526. doi: 10.1093/carcin/8.4.521. [DOI] [PubMed] [Google Scholar]
  24. Lappin D., Whaley K. The role of ion channels and protein kinase C activation in the stimulation of complement protein synthesis. J Clin Lab Immunol. 1987 Oct;24(2):57–62. [PubMed] [Google Scholar]
  25. Nishizuka Y. The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature. 1988 Aug 25;334(6184):661–665. doi: 10.1038/334661a0. [DOI] [PubMed] [Google Scholar]
  26. Old L. J. Tumor necrosis factor (TNF). Science. 1985 Nov 8;230(4726):630–632. doi: 10.1126/science.2413547. [DOI] [PubMed] [Google Scholar]
  27. Prpic V., Weiel J. E., Somers S. D., DiGuiseppi J., Gonias S. L., Pizzo S. V., Hamilton T. A., Herman B., Adams D. O. Effects of bacterial lipopolysaccharide on the hydrolysis of phosphatidylinositol-4,5-bisphosphate in murine peritoneal macrophages. J Immunol. 1987 Jul 15;139(2):526–533. [PubMed] [Google Scholar]
  28. Radzioch D., Varesio L. Protein kinase C inhibitors block the activation of macrophages by IFN-beta but not by IFN-gamma. J Immunol. 1988 Feb 15;140(4):1259–1263. [PubMed] [Google Scholar]
  29. Raetz C. R., Ulevitch R. J., Wright S. D., Sibley C. H., Ding A., Nathan C. F. Gram-negative endotoxin: an extraordinary lipid with profound effects on eukaryotic signal transduction. FASEB J. 1991 Sep;5(12):2652–2660. doi: 10.1096/fasebj.5.12.1916089. [DOI] [PubMed] [Google Scholar]
  30. Rana R. S., Hokin L. E. Role of phosphoinositides in transmembrane signaling. Physiol Rev. 1990 Jan;70(1):115–164. doi: 10.1152/physrev.1990.70.1.115. [DOI] [PubMed] [Google Scholar]
  31. Rüegg U. T., Burgess G. M. Staurosporine, K-252 and UCN-01: potent but nonspecific inhibitors of protein kinases. Trends Pharmacol Sci. 1989 Jun;10(6):218–220. doi: 10.1016/0165-6147(89)90263-0. [DOI] [PubMed] [Google Scholar]
  32. Sariban E., Imamura K., Luebbers R., Kufe D. Transcriptional and posttranscriptional regulation of tumor necrosis factor gene expression in human monocytes. J Clin Invest. 1988 May;81(5):1506–1510. doi: 10.1172/JCI113482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Smith D. M., Lackides G. A., Epstein L. B. Coordinated induction of autocrine tumor necrosis factor and interleukin 1 in normal human monocytes and the implications for monocyte-mediated cytotoxicity. Cancer Res. 1990 Jun 1;50(11):3146–3153. [PubMed] [Google Scholar]
  34. Strulovici B., Daniel-Issakani S., Baxter G., Knopf J., Sultzman L., Cherwinski H., Nestor J., Jr, Webb D. R., Ransom J. Distinct mechanisms of regulation of protein kinase C epsilon by hormones and phorbol diesters. J Biol Chem. 1991 Jan 5;266(1):168–173. [PubMed] [Google Scholar]
  35. Tamaoki T., Nomoto H., Takahashi I., Kato Y., Morimoto M., Tomita F. Staurosporine, a potent inhibitor of phospholipid/Ca++dependent protein kinase. Biochem Biophys Res Commun. 1986 Mar 13;135(2):397–402. doi: 10.1016/0006-291x(86)90008-2. [DOI] [PubMed] [Google Scholar]
  36. Taniguchi H., Sakano T., Hamasaki T., Kashiwa H., Ueda K. Effect of protein kinase C inhibitor (H-7) and calmodulin antagonist (W-7) on pertussis toxin-induced IL-1 production by human adherent monocytes. Comparison with lipopolysaccharide as a stimulator of IL-1 production. Immunology. 1989 Jun;67(2):210–215. [PMC free article] [PubMed] [Google Scholar]
  37. Wager R. E., Assoian R. K. A phorbol ester-regulated ribonuclease system controlling transforming growth factor beta 1 gene expression in hematopoietic cells. Mol Cell Biol. 1990 Nov;10(11):5983–5990. doi: 10.1128/mcb.10.11.5983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Weinstein S. L., Gold M. R., DeFranco A. L. Bacterial lipopolysaccharide stimulates protein tyrosine phosphorylation in macrophages. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4148–4152. doi: 10.1073/pnas.88.10.4148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. van Kessel K. P., Visser M. R., van Strijp J. A., van Kats-Renaud J. H., Verhoef J. Cytotoxicity by human adherent cells: oxygen-dependent and -independent cytotoxic reactions by different cell populations. Immunology. 1986 Jun;58(2):291–296. [PMC free article] [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES