Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Jul;62(7):2477–2481. doi: 10.1128/aem.62.7.2477-2481.1996

Bacteria Are Omnipresent on Phanerochaete chrysosporium Burdsall

F Seigle-Murandi, P Guiraud, J Croize, E Falsen, K L Eriksson
PMCID: PMC1388895  PMID: 16535357

Abstract

Bacteria have been isolated from 10 different strains of Phanerochaete chrysosporium, a white rot fungus which degrades lignocellulosic materials. The investigations showed that one or more bacterial species were always associated with the fungus. Various attempts to eliminate the bacteria on the fungus were unsuccessful. Three different bacterial species were isolated and identified. One of these was Agrobacterium radiobacter, while another may represent a new taxon close to the genus Burkholderia. A third strain remains unidentified but is most probably a member of rRNA superfamily IV or the Woese (alpha) group. Besides P. chrysosporium, 23 other white rot fungi and 9 brown rot fungi were also investigated. None of these was associated with bacteria. The physiological significance of the association between the fungus and the bacteria remains to be elucidated.

Full Text

The Full Text of this article is available as a PDF (322.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barder M. J., Crawford D. L. Effects of carbon and nitrogen supplementation on lignin and cellulose decomposition by a Streptomyces. Can J Microbiol. 1981 Aug;27(8):859–863. doi: 10.1139/m81-136. [DOI] [PubMed] [Google Scholar]
  2. Boyle C. D., Kropp B. R., Reid I. D. Solubilization and mineralization of lignin by white rot fungi. Appl Environ Microbiol. 1992 Oct;58(10):3217–3224. doi: 10.1128/aem.58.10.3217-3224.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Conn H. J. Validity of the Genus Alcaligenes. J Bacteriol. 1942 Sep;44(3):353–360. doi: 10.1128/jb.44.3.353-360.1942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Crawford D. L., Pometto A. L., Crawford R. L. Lignin Degradation by Streptomyces viridosporus: Isolation and Characterization of a New Polymeric Lignin Degradation Intermediate. Appl Environ Microbiol. 1983 Mar;45(3):898–904. doi: 10.1128/aem.45.3.898-904.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Edmond M. B., Riddler S. A., Baxter C. M., Wicklund B. M., Pasculle A. W. Agrobacterium radiobacter: a recently recognized opportunistic pathogen. Clin Infect Dis. 1993 Mar;16(3):388–391. doi: 10.1093/clind/16.3.388. [DOI] [PubMed] [Google Scholar]
  6. Eerola E., Lehtonen O. P. Optimal data processing procedure for automatic bacterial identification by gas-liquid chromatography of cellular fatty acids. J Clin Microbiol. 1988 Sep;26(9):1745–1753. doi: 10.1128/jcm.26.9.1745-1753.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fett W. F., Wells J. M., Cescutti P., Wijey C. Identification of exopolysaccharides produced by fluorescent pseudomonads associated with commercial mushroom (Agaricus bisporus) production. Appl Environ Microbiol. 1995 Feb;61(2):513–517. doi: 10.1128/aem.61.2.513-517.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Freney J., Gruer L. D., Bornstein N., Kiredjian M., Guilvout I., Letouzey M. N., Combe C., Fleurette J. Septicemia caused by Agrobacterium sp. J Clin Microbiol. 1985 Oct;22(4):683–685. doi: 10.1128/jcm.22.4.683-685.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Glenn J. K., Morgan M. A., Mayfield M. B., Kuwahara M., Gold M. H. An extracellular H2O2-requiring enzyme preparation involved in lignin biodegradation by the white rot basidiomycete Phanerochaete chrysosporium. Biochem Biophys Res Commun. 1983 Aug 12;114(3):1077–1083. doi: 10.1016/0006-291x(83)90672-1. [DOI] [PubMed] [Google Scholar]
  10. Gonzalez B., Merino A., Almeida M., Vicña R. Comparative growth of natural bacterial isolates on various lignin-related compounds. Appl Environ Microbiol. 1986 Dec;52(6):1428–1432. doi: 10.1128/aem.52.6.1428-1432.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Goodfellow M., Williams S. T. Ecology of actinomycetes. Annu Rev Microbiol. 1983;37:189–216. doi: 10.1146/annurev.mi.37.100183.001201. [DOI] [PubMed] [Google Scholar]
  12. Jokela J., Pellinen J., Salkinoja-Salonen M. Initial steps in the pathway for bacterial degradation of two tetrameric lignin model compounds. Appl Environ Microbiol. 1987 Nov;53(11):2642–2649. doi: 10.1128/aem.53.11.2642-2649.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kern H. W. Bacterial degradation of dehydropolymers of coniferyl alcohol. Arch Microbiol. 1984 May;138(1):18–25. doi: 10.1007/BF00425401. [DOI] [PubMed] [Google Scholar]
  14. Kern H. W., Kirk T. K. Influence of Molecular Size and Ligninase Pretreatment on Degradation of Lignins by Xanthomonas sp. Strain 99. Appl Environ Microbiol. 1987 Sep;53(9):2242–2246. doi: 10.1128/aem.53.9.2242-2246.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Odier E., Janin G., Monties B. Poplar lignin decomposition by gram-negative aerobic bacteria. Appl Environ Microbiol. 1981 Feb;41(2):337–341. doi: 10.1128/aem.41.2.337-341.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Odier E., Rolando C. Catabolism of arylglycerol-beta-aryl ethers lignin model compounds by Pseudomonas cepacia 122. Biochimie. 1985 Feb;67(2):191–197. doi: 10.1016/s0300-9084(85)80047-x. [DOI] [PubMed] [Google Scholar]
  17. Pometto A. L., Crawford D. L. Effects of pH on Lignin and Cellulose Degradation by Streptomyces viridosporus. Appl Environ Microbiol. 1986 Aug;52(2):246–250. doi: 10.1128/aem.52.2.246-250.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rahouti M., Seigle-Murandi F., Steiman R., Eriksson K. E. Metabolism of Ferulic Acid by Paecilomyces variotii and Pestalotia palmarum. Appl Environ Microbiol. 1989 Sep;55(9):2391–2398. doi: 10.1128/aem.55.9.2391-2398.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sawada H., Ieki H., Oyaizu H., Matsumoto S. Proposal for rejection of Agrobacterium tumefaciens and revised descriptions for the genus Agrobacterium and for Agrobacterium radiobacter and Agrobacterium rhizogenes. Int J Syst Bacteriol. 1993 Oct;43(4):694–702. doi: 10.1099/00207713-43-4-694. [DOI] [PubMed] [Google Scholar]
  20. Seigle-Murandi F., Steiman R., Rahouti M., Benoit-Guyod J. L., Eriksson K. E. Metabolism of ferulic and syringic acids by micromycetes. Microbiologica. 1990 Jul;13(3):191–200. [PubMed] [Google Scholar]
  21. Sutherland J. B., Crawford D. L., Pometto A. L., 3rd Metabolism of cinnamic, p-coumaric, and ferulic acids by Streptomyces setonii. Can J Microbiol. 1983 Oct;29(10):1253–1257. doi: 10.1139/m83-195. [DOI] [PubMed] [Google Scholar]
  22. Tien M., Kirk T. K. Lignin-degrading enzyme from Phanerochaete chrysosporium: Purification, characterization, and catalytic properties of a unique H(2)O(2)-requiring oxygenase. Proc Natl Acad Sci U S A. 1984 Apr;81(8):2280–2284. doi: 10.1073/pnas.81.8.2280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tien M., Tu C. P. Cloning and sequencing of a cDNA for a ligninase from Phanerochaete chrysosporium. Nature. 1987 Apr 2;326(6112):520–523. doi: 10.1038/326520a0. [DOI] [PubMed] [Google Scholar]
  24. Trojanowski J., Haider K., Sundman V. Decomposition of 14C-labelled lignin and phenols by a Nocardia sp. Arch Microbiol. 1977 Aug 26;114(2):149–153. doi: 10.1007/BF00410776. [DOI] [PubMed] [Google Scholar]
  25. Yabuuchi E., Kosako Y., Oyaizu H., Yano I., Hotta H., Hashimoto Y., Ezaki T., Arakawa M. Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol Immunol. 1992;36(12):1251–1275. doi: 10.1111/j.1348-0421.1992.tb02129.x. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES