Abstract
Amino-terminal sequence determinations are reported of the subunits of biliproteins of prokaryotic unicellular and filamentous cyanobacteria and of eukaryotic unicellular red algae. The biliproteins examined, allophycocyanin, C-phycocyanin, R-phycocyanin, b-phycoerythrin, and phycoerythrocyanin, vary with respect to the chemical nature and the number and distribution of the bilin chromophores between the two dissimilar subunits. The amino-terminal sequences fall into two classes, “α-type” and “β-type”, with a high degree of homology within each class.
In those biliproteins where the number of bilin chromophores on the two subunits is unequal, the subunit with the greater number of chromophores has the β-type amino-acid sequence.
Extensive homology also exists between α- and β-type sequences, strongly supporting the view that these arose by gene duplication to give rise to the ancestral α- and β-type genes early in the evolution of the biliproteins. The subsequent generation of the various classes of biliproteins appears to be the result of further gene duplication of the α- and β-type genes, ultimately to give rise to families of polypeptide chains of similar sequence, but varying in the number of chromophore attachment sites and the structure of the chromophores.
Keywords: phycobiliproteins, amino-terminal sequences, evolution, structure-function relationships
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bennett A., Bogorad L. Properties of subunits and aggregates of blue-green algal biliproteins. Biochemistry. 1971 Sep 14;10(19):3625–3634. doi: 10.1021/bi00795a022. [DOI] [PubMed] [Google Scholar]
- Berns D. S. Immunochemistry of biliproteins. Plant Physiol. 1967 Nov;42(11):1569–1586. doi: 10.1104/pp.42.11.1569. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown A. S., Foster J. A., Voynow P. V., Franzblau C., Troxler R. F. Allophycocyanin from the filamentous cyanophyte, Phormidium luridum. Biochemistry. 1975 Aug 12;14(16):3581–3588. doi: 10.1021/bi00687a011. [DOI] [PubMed] [Google Scholar]
- Frank G., Zuber H., Lergier W. How homologous are the alpha and beta subunits of C-phycocyanin? Experientia. 1975 Jan 15;31(1):23–26. doi: 10.1007/BF01924658. [DOI] [PubMed] [Google Scholar]
- Gantt E., Lipschultz C. A. Phycobilisomes of Porphyridium cruentum: pigment analysis. Biochemistry. 1974 Jul 2;13(14):2960–2966. doi: 10.1021/bi00711a027. [DOI] [PubMed] [Google Scholar]
- Glazer A. N., Bryant D. A. Allophycocyanin B (lambdamax 671, 618 nm): a new cyanobacterial phycobiliprotein. Arch Microbiol. 1975 Jun 20;104(1):15–22. doi: 10.1007/BF00447294. [DOI] [PubMed] [Google Scholar]
- Glazer A. N., Cohen-Bazire G., Stanier R. Y. Comparative immunology of algal biliproteins. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3005–3008. doi: 10.1073/pnas.68.12.3005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glazer A. N., Cohen-Bazire G. Subunit structure of the phycobiliproteins of blue-green algae. Proc Natl Acad Sci U S A. 1971 Jul;68(7):1398–1401. doi: 10.1073/pnas.68.7.1398. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glazer A. N., Fang S., Brown D. M. Spectroscopic properties of C-phycocyanin and of its alpha and beta subunits. J Biol Chem. 1973 Aug 25;248(16):5679–5685. [PubMed] [Google Scholar]
- Glazer A. N., Fang S. Chromophore content of blue-green algal phycobiliproteins. J Biol Chem. 1973 Jan 25;248(2):659–662. [PubMed] [Google Scholar]
- Glazer A. N., Fang S. Formation of hybrid proteins form the and subunits of phycocyanins of unicellular and filamentous blue-green algae. J Biol Chem. 1973 Jan 25;248(2):663–671. [PubMed] [Google Scholar]
- Glazer A. N., Hixson C. S. Characterization of R-phycocyanin. Chromophore content of R-phycocyanin and C-phycoerythrin. J Biol Chem. 1975 Jul 25;250(14):5487–5495. [PubMed] [Google Scholar]
- Gysi J., Zuber H. Isolation and characterization of allophycocyanin II from the thermophilic blue-green alga Mastigocladus laminosus Cohn. FEBS Lett. 1974 Nov 15;48(2):209–213. doi: 10.1016/0014-5793(74)80469-2. [DOI] [PubMed] [Google Scholar]
- Harris J. U., Berns D. S. Letter: Sequences of the N-terminus portions of biliproteins. J Mol Evol. 1975 Jul 11;5(2):153–163. doi: 10.1007/BF01732519. [DOI] [PubMed] [Google Scholar]
- Inagami T., Murakami K. Identification of phenylthiohydantoins of amino acids by thin-layer chromatography on a plastic-backed silica-gel plate. Anal Biochem. 1972 Jun;47(2):501–504. doi: 10.1016/0003-2697(72)90144-3. [DOI] [PubMed] [Google Scholar]
- Pisano J. J., Bronzert T. J., Brewer H. B., Jr Advances in the gas chromatographic analysis of amino acid phenyl- and methylthiohydantoins. Anal Biochem. 1972 Jan;45(1):43–59. doi: 10.1016/0003-2697(72)90006-1. [DOI] [PubMed] [Google Scholar]
- Stanier R. Y., Kunisawa R., Mandel M., Cohen-Bazire G. Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev. 1971 Jun;35(2):171–205. doi: 10.1128/br.35.2.171-205.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Teale F. W., Dale R. E. Isolation and spectral characterization of phycobiliproteins. Biochem J. 1970 Jan;116(2):161–169. doi: 10.1042/bj1160161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Troxler R. F., Foster J. A., Brown A. S., Franzblau C. The alpha and beta subunits of Cyanidium caldarium phycocyanin: properties and amino acid sequences at the amino terminus. Biochemistry. 1975 Jan 28;14(2):268–274. doi: 10.1021/bi00673a012. [DOI] [PubMed] [Google Scholar]
- Van Orden H. O., Carpenter F. H. Hydrolysis of phenylthiohydantoins of amino acids. Biochem Biophys Res Commun. 1964;14:399–403. doi: 10.1016/0006-291x(64)90075-0. [DOI] [PubMed] [Google Scholar]
- Williams V. P., Freidenreich P., Glazer A. N. Homology of amino-terminal regions of C-phycocyanins from a prokaryote and a eukaryote. Biochem Biophys Res Commun. 1974 Jul 24;59(2):462–466. doi: 10.1016/s0006-291x(74)80002-1. [DOI] [PubMed] [Google Scholar]
