Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Apr;77(4):1961–1965. doi: 10.1073/pnas.77.4.1961

Cyanobacterial phycobilisomes: Selective dissociation monitored by fluorescence and circular dichroism

Meir Rigbi 1,*, Joanne Rosinski 1, Harold W Siegelman 1, John Clark Sutherland 1
PMCID: PMC348629  PMID: 16592802

Abstract

Phycobilisomes are supramolecular assemblies of phycobiliproteins responsible for photosynthetic light collection in red algae and cyanobacteria. They can be selectively dissociated by reduction of temperature and buffer concentration. Phycobilisomes isolated from Fremyella diplosiphon transfer energy collected by C-phycoerythrin and C-phycocyanin to allophycocyanin. The energy transfer to allophycocyanin is nearly abolished at 2°C, as indicated by a blue shift in fluorescence emission, and is accompanied by a decrease in the circular dichroism in the region of allophycocyanin absorbance. Further dissociation of the phycobilisomes can be attained by reduction of buffer concentration and holding at 2°C. Energy transfer to C-phycocyanin is nearly abolished, and decreases occur in the circular dichroism in the region of C-phycocyanin and C-phycoerythrin absorbance. Complete dissociation of the phycobilisomes at low buffer concentration and 2°C requires extended time. Energy transfer to C-phycocyanin is further reduced and the circular dichroism maximum of C-phycoerythrin at 575 nm is lost. Circular dichroism provides information on the hexamer-monomer transitions of the phycobiliproteins, whereas fluorescence is indicative of hexamer-hexamer interactions. We consider that hydrophobic interactions are fundamental to the maintenance of the structure and function of phycobilisomes.

Keywords: phycobiliproteins, energy transfer, hydrophobic interactions

Full text

PDF
1961

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett A., Bogorad L. Complementary chromatic adaptation in a filamentous blue-green alga. J Cell Biol. 1973 Aug;58(2):419–435. doi: 10.1083/jcb.58.2.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bennett A., Bogorad L. Properties of subunits and aggregates of blue-green algal biliproteins. Biochemistry. 1971 Sep 14;10(19):3625–3634. doi: 10.1021/bi00795a022. [DOI] [PubMed] [Google Scholar]
  3. Gantt E., Lipschultz C. A. Energy transfer in phycobilisomes from phycoerythrin to allophycocyanin. Biochim Biophys Acta. 1973 Apr 5;292(3):858–861. doi: 10.1016/0005-2728(73)90036-4. [DOI] [PubMed] [Google Scholar]
  4. Gantt E., Lipschultz C. A., Grabowski J., Zimmerman B. K. Phycobilisomes from blue-green and red algae: isolation criteria and dissociation characteristics. Plant Physiol. 1979 Apr;63(4):615–620. doi: 10.1104/pp.63.4.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gantt E., Lipschultz C. A. Phycobilisomes of Porphyridium cruentum. I. Isolation. J Cell Biol. 1972 Aug;54(2):313–324. doi: 10.1083/jcb.54.2.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gantt E., Lipschultz C. A., Zilinskas B. Further evidence for a phycobilisome model from selective dissociation, fluorescence emission, immunoprecipitation, and electron microscopy. Biochim Biophys Acta. 1976 May 14;430(2):375–388. doi: 10.1016/0005-2728(76)90093-1. [DOI] [PubMed] [Google Scholar]
  7. Glazer A. N., Bryant D. A. Allophycocyanin B (lambdamax 671, 618 nm): a new cyanobacterial phycobiliprotein. Arch Microbiol. 1975 Jun 20;104(1):15–22. doi: 10.1007/BF00447294. [DOI] [PubMed] [Google Scholar]
  8. Glazer A. N., Fang S., Brown D. M. Spectroscopic properties of C-phycocyanin and of its alpha and beta subunits. J Biol Chem. 1973 Aug 25;248(16):5679–5685. [PubMed] [Google Scholar]
  9. Gray B. H., Lipschultz C. A., Gantt E. Phycobilisomes from a blue-green alga Nostoc species. J Bacteriol. 1973 Oct;116(1):471–478. doi: 10.1128/jb.116.1.471-478.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gysi J., Zuber H. Isolation and characterization of allophycocyanin II from the thermophilic blue-green alga Mastigocladus laminosus Cohn. FEBS Lett. 1974 Nov 15;48(2):209–213. doi: 10.1016/0014-5793(74)80469-2. [DOI] [PubMed] [Google Scholar]
  11. Hattori A., Crespi H. L., Katz J. J. Effect of side-chain deuteration on protein stability. Biochemistry. 1965 Jul;4(7):1213–1225. doi: 10.1021/bi00883a002. [DOI] [PubMed] [Google Scholar]
  12. KAUZMANN W. Some factors in the interpretation of protein denaturation. Adv Protein Chem. 1959;14:1–63. doi: 10.1016/s0065-3233(08)60608-7. [DOI] [PubMed] [Google Scholar]
  13. Koller K. P., Wehrmeyer W., Mörschel E. Biliprotein assemble in the disc-shaped phycobilisomes of Rhodella violacea. On the molecular composition of energy-transfering complexes (tripartite units) forming the periphery of the phycobilisome. Eur J Biochem. 1978 Nov 2;91(1):57–63. doi: 10.1111/j.1432-1033.1978.tb20936.x. [DOI] [PubMed] [Google Scholar]
  14. MacColl R., Berns D. S., Gibbons O. Characterization cryptomonad phycoerythrin and phycocyanin. Arch Biochem Biophys. 1976 Nov;177(1):265–275. doi: 10.1016/0003-9861(76)90436-7. [DOI] [PubMed] [Google Scholar]
  15. MacColl R., Berns D. S., Koven N. L. Effect of salts on C-phycocyanin. Arch Biochem Biophys. 1971 Oct;146(2):477–482. doi: 10.1016/0003-9861(71)90151-2. [DOI] [PubMed] [Google Scholar]
  16. Neufeld G. J., Riggs A. F. Aggregation properties of C-Phycocyanin from Anacystis nidulans. Biochim Biophys Acta. 1969 May;181(1):234–243. doi: 10.1016/0005-2795(69)90246-3. [DOI] [PubMed] [Google Scholar]
  17. Pecci J., Fujimori E. Mercurial-induced circular dichroism changes of phycoerythrin and phycocyanin. Biochim Biophys Acta. 1969;188(2):230–236. doi: 10.1016/0005-2795(69)90070-1. [DOI] [PubMed] [Google Scholar]
  18. Påhlman, Rosengren J., Hjertén S. Hydrophobic interaction chromatography on uncharged Sepharose derivatives. Effects of neutral salts on the adsorption of proteins. J Chromatogr. 1977 Jan 21;131:99–108. doi: 10.1016/s0021-9673(00)80924-3. [DOI] [PubMed] [Google Scholar]
  19. Rosengren J., Pählman S., Glad M., Hjertén S. Hydrophobic interaction chromatography on non-charged Sepharose derivatives. Binding of a model protein, related to ionic strength, hydrophobicity of the substituent, and degree of substitution (determined by NMR). Biochim Biophys Acta. 1975 Nov 18;412(1):51–61. [PubMed] [Google Scholar]
  20. Sutherland J. C., Cimino G. D., Desmond E. J. Simultaneous measurement of fluorescence and phosphorescence using synchronously gated photon counters. Anal Biochem. 1979 Aug;97(1):158–165. doi: 10.1016/0003-2697(79)90340-3. [DOI] [PubMed] [Google Scholar]
  21. Sutherland J. C., Cimino G. D., Lowe J. T. Emission and polarization spectrometer for biophysical spectroscopy. Rev Sci Instrum. 1976 Mar;47(3):358–360. doi: 10.1063/1.1134624. [DOI] [PubMed] [Google Scholar]
  22. Yamanaka G., Glazer A. N., Williams R. C. Cyanobacterial phycobilisomes. Characterization of the phycobilisomes of Synechococcus sp. 6301. J Biol Chem. 1978 Nov 25;253(22):8303–8310. [PubMed] [Google Scholar]
  23. de Marsac N. T., Cohen-bazire G. Molecular composition of cyanobacterial phycobilisomes. Proc Natl Acad Sci U S A. 1977 Apr;74(4):1635–1639. doi: 10.1073/pnas.74.4.1635. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES