Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1973 Aug;52(2):166–170. doi: 10.1104/pp.52.2.166

Rhythmic Differences in the Basipetal Movement of Indoleacetic Acid between Separated Upper and Lower Halves of Geotropically Stimulated Corn Coleoptiles 1

J Shen-Miller a
PMCID: PMC366461  PMID: 16658520

Abstract

Rhythmic fluctuation in the basipetal movement of auxin occurs in corn (Zea mays) coleoptiles oriented either in the vertical or in the horizontal position. This periodicity of transport rate varies from region to region in a horizontal coleoptile. Between an upper and lower half coleoptile (with respect to gravity), the comparable regions in the coleoptile do not exhibit similar periods. The velocity of transport also varies from region to region along a geostimulated coleoptile. In the upper half coleoptile, the velocities are 29 millimeters per hour (tip), 8 millimeters per hour (mid), and 30 millimeters per hour (base); in the lower, 41 millimeters per hour (tip), 12 millimeters per hour (mid) and 12 millimeters per hour (base).

During the first 24 minutes of transport, there is a reduction of basipetal movement of 14C-indoleacetic acid in the lower half coleoptile. This may be causally related to the initial downward geotropic curvature in oat and corn coleoptiles reported by others. However, about 30 minutes after donor removal a significant reduction of basipetal transport of indoleacetic acid occurs in the upper half coleoptiles.

Full text

PDF
166

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BETZ A., CHANCE B. PHASE RELATIONSHIP OF GLYCOLYTIC INTERMEDIATES IN YEAST CELLS WITH OSCILLATORY METABOLIC CONTROL. Arch Biochem Biophys. 1965 Mar;109:585–594. doi: 10.1016/0003-9861(65)90404-2. [DOI] [PubMed] [Google Scholar]
  2. Berlin R. D. Specificities of transport systems and enzymes. Science. 1970 Jun 26;168(3939):1539–1545. doi: 10.1126/science.168.3939.1539. [DOI] [PubMed] [Google Scholar]
  3. Bodnaryk R. P. Membrane-bound -glutamyl transpeptidase. Evidence that it is a component of the amino acid site' of certain neutral amino acid transport systems. Can J Biochem. 1972 May;50(5):524–528. doi: 10.1139/o72-072. [DOI] [PubMed] [Google Scholar]
  4. Cane A. R., Wilkins M. B. Independence of Lateral and Differential Longitudinal Movement of Indoleactic Acid in Geotropically Stimulated Coleoptiles of Zea mays. Plant Physiol. 1969 Nov;44(11):1481–1487. doi: 10.1104/pp.44.11.1481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Diedrich D. F., Stringham C. H. Active site comparison of mutarotase with the glucose carrier in human erythrocytes. Arch Biochem Biophys. 1970 Jun;138(2):499–505. doi: 10.1016/0003-9861(70)90374-7. [DOI] [PubMed] [Google Scholar]
  6. Ehret C. F., Trucco E. Molecular models for the circadian clock. I. The chronon concept. J Theor Biol. 1967 May;15(2):240–262. doi: 10.1016/0022-5193(67)90206-8. [DOI] [PubMed] [Google Scholar]
  7. Fuente R. K., Leopold A. C. Two components of auxin transport. Plant Physiol. 1972 Oct;50(4):491–495. doi: 10.1104/pp.50.4.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Higgins M., Kawachi T., Rudney H. The mechanism of the diurnal variation of hepatic HMG-CoA reductase activity in the rat. Biochem Biophys Res Commun. 1971 Oct 1;45(1):138–144. doi: 10.1016/0006-291x(71)90061-1. [DOI] [PubMed] [Google Scholar]
  9. Hirata H., Brodie A. F. Membrane orientation and active transport of proline. Biochem Biophys Res Commun. 1972 May 12;47(3):633–638. doi: 10.1016/0006-291x(72)90925-4. [DOI] [PubMed] [Google Scholar]
  10. Kaback H. R. Transport across isolated bacterial cytoplasmic membranes. Biochim Biophys Acta. 1972 Aug 4;265(3):367–416. doi: 10.1016/0304-4157(72)90014-7. [DOI] [PubMed] [Google Scholar]
  11. Kates J. R., Jones R. F. Periodic increases in enzyme activity in synchronized cultures of Chlamydomonas reinhardtii. Biochim Biophys Acta. 1967 Aug 22;145(1):153–158. doi: 10.1016/0005-2787(67)90664-8. [DOI] [PubMed] [Google Scholar]
  12. Naqvi S. M., Gordon S. A. Auxin Transport in Zea mays L. Coleoptiles I. Influence of Gravity on the Transport of Indoleacetic Acid-2-C. Plant Physiol. 1966 Sep;41(7):1113–1118. doi: 10.1104/pp.41.7.1113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Pardee A. B. Membrane transport proteins. Proteins that appear to be parts of membrane transport systems are being isolated and characterized. Science. 1968 Nov 8;162(3854):632–637. doi: 10.1126/science.162.3854.632. [DOI] [PubMed] [Google Scholar]
  14. Pye K., Chance B. Sustained sinusoidal oscillations of reduced pyridine nucleotide in a cell-free extract of Saccharomyces carlsbergensis. Proc Natl Acad Sci U S A. 1966 Apr;55(4):888–894. doi: 10.1073/pnas.55.4.888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Robinson J. D. Phosphatase activity stimulated by Na+ plus K+: implications for the (Na+ plus K+)-dependent adenosine triphosphatase. Arch Biochem Biophys. 1970 Jul;139(1):164–171. doi: 10.1016/0003-9861(70)90057-3. [DOI] [PubMed] [Google Scholar]
  16. Shen-Miller J., Gordon S. A. Hormonal Relations in the Phototropic Response: III. The Movement of C-labeled and Endogenous Indoleacetic Acid in Phototropically Stimulated Zea Coleoptiles. Plant Physiol. 1966 Jan;41(1):59–65. doi: 10.1104/pp.41.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Shen-Miller J. Kinetics of stress relaxation properties of oat coleoptile cell wall after geotropic stimulation. Plant Physiol. 1973 Mar;51(3):464–467. doi: 10.1104/pp.51.3.464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Shen-Miller J. Rhythmicity in the Basipetal Transport of Indoleacetic Acid through Coleoptiles. Plant Physiol. 1973 Apr;51(4):615–619. doi: 10.1104/pp.51.4.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Storelli C., Vögeli H., Semenza G. Reconstitution of a sucrase-mediated sugar transport system in lipid membranes. FEBS Lett. 1972 Aug 15;24(3):287–292. doi: 10.1016/0014-5793(72)80374-0. [DOI] [PubMed] [Google Scholar]
  20. Walther W. G., Edmunds L. N. Periodic increase in deoxyribonuclease activity during the cell cycle in synchronized euglena. J Cell Biol. 1970 Sep;46(3):613–617. doi: 10.1083/jcb.46.3.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. von Klitzing L. Oszillatorische Regulationserscheinungen in der einzelligen Grünalge Acetabularia. Protoplasma. 1969;68(3):341–350. doi: 10.1007/BF01251618. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES