Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1978 Dec;62(6):894–898. doi: 10.1104/pp.62.6.894

Environmental and Seasonal Factors Affecting the Frost-induced Stage of Cold Acclimation in Cornus stolonifera Michx 1

L Christen Harrison 1,2, Conrad J Weiser 1,3, Michael J Burke 1,4
PMCID: PMC1092249  PMID: 16660633

Abstract

Stem tissues of red-osier dogwood (Cornus stolonifera Michx.) acclimated from −3 C to −40 or −50 C in 8 to 10 weeks under a short photoperiod (9 hours) and controlled temperature conditions. During the summer months plants did not acclimate as well as at other times. The sequence of day/night temperature regimes which induced maximum acclimation was 20/15 C for 5 to 6 weeks; 15/5 C for 2 to 3 weeks; 15/5 C plus 1 hour of frost per day for 1 week. The duration of exposure to each temperature regime influenced the rate and intensity of frost-induced acclimation. Less than 5 weeks of warm temperature preconditioning at 20/15 C reduced subsequent frost-induced acclimation. The inductive influence of frost on cold acclimation was additive over 5 days of repeated exposure, but its effects after the first exposure(s) were not immediate—requiring 1 to 4 days of 15/5 C following the frost treatments for the expression of the frost-induced acclimation to be manifest. There was a 75% increase in rRNA following 3 days of frost exposure and plants in an O2-free atmosphere during frost exposure failed to acclimate. The results suggest that seasonal acclimation behavior was due to endogenous rhythms rather than developmental stage, and that the frost-induced phase of acclimation involves aerobic metabolic processes.

Full text

PDF
894

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Fuchigami L. H., Weiser C. J., Evert D. R. Induction of Cold Acclimation in Cornus stolonifera Michx. Plant Physiol. 1971 Jan;47(1):98–103. doi: 10.1104/pp.47.1.98. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Howell G. S., Weiser C. J. The environmental control of cold acclimation in apple. Plant Physiol. 1970 Apr;45(4):390–394. doi: 10.1104/pp.45.4.390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Loening U. E., Ingle J. Diversity of RNA components in green plant tissues. Nature. 1967 Jul 22;215(5099):363–367. doi: 10.1038/215363a0. [DOI] [PubMed] [Google Scholar]
  4. McKenzie J. S., Weiser C. J., Burke M. J. Effects of Red and Far Red Light on the Initiation of Cold Acclimation in Cornus stolonifera Michx. Plant Physiol. 1974 Jun;53(6):783–789. doi: 10.1104/pp.53.6.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Weiser C. J. Cold Resistance and Injury in Woody Plants: Knowledge of hardy plant adaptations to freezing stress may help us to reduce winter damage. Science. 1970 Sep 25;169(3952):1269–1278. doi: 10.1126/science.169.3952.1269. [DOI] [PubMed] [Google Scholar]
  6. Williams B. J., Pellett N. E., Klein R. M. Phytochrome control of growth cessation and initiation of cold acclimation in selected woody plants. Plant Physiol. 1972 Aug;50(2):262–265. doi: 10.1104/pp.50.2.262. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES