Abstract
Callus cultures derived from pith tissue of Nicotiana tabacum were grown on two media either under continuous illumination or in complete darkness. The first medium limited greening ability of callus grown in the light (3 milligrams per liter naphthalene acetic acid, 0.3 milligram per liter 2-isopentenylaminopurine, Murashige and Skoog salts, and 2% sucrose). The second medium encouraged chlorophyll synthesis (greening) though not shoot formation (0.3 milligram per liter naphthalene acetic acid; 0.3 milligrans per liter 2-isopentylaminopurine). To measure intracellular concentrations, calli were grown for 15 days on these standard media containing [U-14C]sucrose. The dry weight proportions of the calli (as a fraction of fresh weight) and many metabolite concentrations nearly doubled in light-grown cells compared to dark-grown cells and increased 30 to 40% on low-auxin media relative to high-auxin media. Glutamine concentrations (from 4 to 26 millimolar) were very high, probably due to the NH3 content of the media. Proline concentrations were 20-fold higher in calli grown on low-auxin media in the light (green cells), possibly a stress response to high osmotic potentials in these cells. To analyze sucrose metabolism, callus cells were allowed to take up 0.2% (weight per volume) [U-14C]sucrose for up to 90 minutes. In callus tissues and in pith sections from stems of tobacco plants, sucrose was primarily metabolized through invertase activity, producing equal amounts of labeled glucose and fructose. Respiration of 14CO2 followed the labeling patterns of tricarboxylic acid cycle intermediates. Photorespiration activity was low.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Airhart J., Kelley J., Brayden J. E., Low R. B., Stirewalt W. S. An ultramicro method of amino acid analysis: application to studies of protein metabolism in cultured cells. Anal Biochem. 1979 Jul 1;96(1):45–55. doi: 10.1016/0003-2697(79)90552-9. [DOI] [PubMed] [Google Scholar]
- Berlyn M. B., Zelitch I., Beaudette P. D. Photosynthetic characteristics of photoautotrophically grown tobacco callus cells. Plant Physiol. 1978 Apr;61(4):606–610. doi: 10.1104/pp.61.4.606. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown D. C., Thorpe T. A. Adenosine Phosphate and Nicotinamide Adenine Dinucleotide Pool Sizes during Shoot Initiation in Tobacco Callus. Plant Physiol. 1980 Apr;65(4):587–590. doi: 10.1104/pp.65.4.587. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Larsen P. O., Cornwell K. L., Gee S. L., Bassham J. A. Amino Acid Synthesis in Photosynthesizing Spinach Cells : EFFECTS OF AMMONIA ON POOL SIZES AND RATES OF LABELING FROM CO(2). Plant Physiol. 1981 Aug;68(2):292–299. doi: 10.1104/pp.68.2.292. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MIZUSKI S., NOGUCHI M., TAMAKI E. STUDIES ON NITROGEN METABOLISM IN TOBACCO PLANTS. VI. METABOLISM OF GLUTAMIC ACID, GAMMA-AMINOBUTYRIC ACID, AND PROLINE IN TOBACCO LEAVES. Arch Biochem Biophys. 1964 Jun;105:599–605. doi: 10.1016/0003-9861(64)90056-6. [DOI] [PubMed] [Google Scholar]
- Stedman R. L. The chemical composition of tobacco and tobacco smoke. Chem Rev. 1968 Apr;68(2):153–207. doi: 10.1021/cr60252a002. [DOI] [PubMed] [Google Scholar]
