Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1983 Apr;71(4):707–711. doi: 10.1104/pp.71.4.707

Solubilization and Partial Purification of N,N′-Dicyclohexylcarbodiimide-Sensitive ATPase from Pea Cotyledon Mitochondria 1

Mark B Whisson 1, Mary S Spencer 1
PMCID: PMC1066108  PMID: 16662893

Abstract

The N,N′-dicyclohexylcarbodiimide (DCCD)-sensitive ATPase of pea (Pisum sativum L.) cotyledon mitochondria was solubilized from submitochondrial particle membranes with sodium cholate and ammonium sulfate. Ammonium sulfate precipitation of the enzyme resulted in an increase in specific activity. At between 38% and 45% saturated ammonium sulfate, 20% of the ATPase activity was precipitated, with a specific activity 4 to 5 times higher than that of the crude enzyme. The precipitate was highly sensitive to DCCD.

The properties of the ammonium sulfate preparation were investigated. It contained levels of cytochrome and NADH dehydrogenase contamination comparable to those of the highly purified F0F1 preparations from animal tissue. The high degree of purification was corroborated by sodium dodecyl sulfate electrophoresis.

Full text

PDF
707

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alfonzo M., Racker E. Components and mechanism of action of ATP-driven proton pumps. Can J Biochem. 1979 Dec;57(12):1351–1358. doi: 10.1139/o79-180. [DOI] [PubMed] [Google Scholar]
  2. Berden J. A., Voorn-Brouwer M. M. Studies on the ATPase complex from beef-heart mitochondria. I. Isolation and characterization of an oligomycin-sensitive and an olgiomycin-insensitive ATPase complex from beef-heart mitochondria. Biochim Biophys Acta. 1978 Mar 13;501(3):424–439. doi: 10.1016/0005-2728(78)90110-x. [DOI] [PubMed] [Google Scholar]
  3. Capaldi R. A. On the subunit structure of oligomycin sensitive ATPase. Biochem Biophys Res Commun. 1973 Aug 21;53(4):1331–1337. doi: 10.1016/0006-291x(73)90611-6. [DOI] [PubMed] [Google Scholar]
  4. Carmeli C., Racker E. Partial resolution of the enzymes catalyzing photophosphorylation. XIV. Reconstitution of chlorophyll-deficient vesicles catalyzing phosphate-adenosine triphosphate exchange. J Biol Chem. 1973 Dec 10;248(23):8281–8287. [PubMed] [Google Scholar]
  5. Eastwell K. C., Spencer M. S. Effect of ethylene on the gibberellic Acid-enhanced synthesis and release of amylase by isolated barley aleurone layers. Plant Physiol. 1982 Mar;69(3):557–562. doi: 10.1104/pp.69.3.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Foster D. L., Fillingame R. H. Energy-transducing H+-ATPase of Escherichia coli. Purification, reconstitution, and subunit composition. J Biol Chem. 1979 Sep 10;254(17):8230–8236. [PubMed] [Google Scholar]
  7. Horak A., Hill R. D. Adenosine triphosphatase of bean plastids: its properties and site of formation. Plant Physiol. 1972 Mar;49(3):365–370. doi: 10.1104/pp.49.3.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kagawa Y., Sone N., Hirata H., Yoshida M. Structure and function of H+-ATPase. J Bioenerg Biomembr. 1979 Aug;11(3-4):39–78. doi: 10.1007/BF00743196. [DOI] [PubMed] [Google Scholar]
  9. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  10. Malhotra S. S., Spencer M. Preparation and properties of purified (Na+ plus K+)-stimulated mitochondrial ATPase from germinating pea seeds. Can J Biochem. 1974 Jun;52(6):491–499. doi: 10.1139/o74-073. [DOI] [PubMed] [Google Scholar]
  11. Nelson N. Structure and function of chloroplast ATPase. Biochim Biophys Acta. 1976 Nov 30;456(3-4):314–338. doi: 10.1016/0304-4173(76)90003-3. [DOI] [PubMed] [Google Scholar]
  12. Pick U., Racker E. Purification and reconstitution of the N,N'-dicyclohexylcarbodiimide-sensitive ATPase complex from spinach chloroplasts. J Biol Chem. 1979 Apr 25;254(8):2793–2799. [PubMed] [Google Scholar]
  13. Reisner A. H., Nemes P., Bucholtz C. The use of Coomassie Brilliant Blue G250 perchloric acid solution for staining in electrophoresis and isoelectric focusing on polyacrylamide gels. Anal Biochem. 1975 Apr;64(2):509–516. doi: 10.1016/0003-2697(75)90461-3. [DOI] [PubMed] [Google Scholar]
  14. Schneider E., Altendorf K. Reconstitution of the purified proton conductor (F0) of the adenosine triphosphatase complex from Escherichia coli. FEBS Lett. 1980 Jul 28;116(2):173–176. doi: 10.1016/0014-5793(80)80636-3. [DOI] [PubMed] [Google Scholar]
  15. Sedmak J. J., Grossberg S. E. A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Anal Biochem. 1977 May 1;79(1-2):544–552. doi: 10.1016/0003-2697(77)90428-6. [DOI] [PubMed] [Google Scholar]
  16. Serrano R., Kanner B. I., Racker E. Purification and properties of the proton-translocating adenosine triphosphatase complex of bovine heart mitochondria. J Biol Chem. 1976 Apr 25;251(8):2453–2461. [PubMed] [Google Scholar]
  17. Solomos T., Malhotra S. S., Prasad S., Malhotra S. K., Spencer M. Biochemical and structural changes in mitochondria and other cellular components of pea cotyledons during germination. Can J Biochem. 1972 Jul;50(7):725–737. doi: 10.1139/o72-101. [DOI] [PubMed] [Google Scholar]
  18. Sone N., Yoshida M., Hirata H., Kagawa Y. Purification and properties of a dicyclohexylcarbodiimide-sensitive adenosine triphosphatase from a thermophilic bacterium. J Biol Chem. 1975 Oct 10;250(19):7917–7923. [PubMed] [Google Scholar]
  19. Stiggall D. L., Galante Y. M., Hatefi Y. Preparation and properties of an ATP-Pi exchange complex (complex V) from bovine heart mitochondria. J Biol Chem. 1978 Feb 10;253(3):956–964. [PubMed] [Google Scholar]
  20. WILLIAMS J. N., Jr A METHOD FOR THE SIMULTANEOUS QUANTITATIVE ESTIMATION OF CYTOCHROMES A, B, C1, AND C IN MITOCHONDRIA. Arch Biochem Biophys. 1964 Sep;107:537–543. doi: 10.1016/0003-9861(64)90313-3. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES