Abstract
The binding of radioactively labeled butyl gallate to sucrose gradient-purified mung bean (Vigna radiata L.) mitochondria was studied. Titrations showed the binding of [14C]butyl gallate to the mitochondria consisted of both reversible and irreversible components. The reversible component bound with a dissociation constant of approximately 1 micromolar which was comparable to the observed inhibition constant for the inhibition of the alternative pathway by butyl gallate. The reversible binding of labeled butyl gallate was also prevented by addition of excess, unlabeled salicylhydroxamic acid. The concentration of binding sites associated with reversible butyl gallate binding was around 0.5 nanomole per milligram of mitochondrial protein. These results were consistent with the reversible binding site being associated with the butyl gallate site of inhibition of the cyanide-resistant, alternative electron transfer pathway in mung bean mitochondria. In addition to the reversible butyl gallate binding site, a nonspecific, irreversible association of butyl gallate with the mitochondrial membrane was observed. The latter binding did not readily saturate at high butyl gallate concentrations and was not correlated with butyl gallate inhibition of the alternative pathway.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beyer R. E., Peters G. A., Ikuma H. Oxido-Reduction States and Natural Homologue of Ubiquinone (Coenzyme Q) in Submitochondrial Particles From Etiolated Mung Bean (Phaseolus aureus) Seedlings. Plant Physiol. 1968 Sep;43(9):1395–1400. doi: 10.1104/pp.43.9.1395. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cedel T. E. Further characterization of the in vitro binding of phytochrome to a membrane fraction enriched for mitochondria. Plant Physiol. 1980 Oct;66(4):696–703. doi: 10.1104/pp.66.4.696. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coles C. J., Singer T. P., White G. A., Thorn G. D. Studies on the binding of carboxin analogs to succinate dehydrogenase. J Biol Chem. 1978 Aug 25;253(16):5573–5578. [PubMed] [Google Scholar]
- Dizengremel P., Chauveau M., Roussaux J. Inhibition by adenine derivatives of the cyanide-insensitive electron transport pathway of plant mitochondria. Plant Physiol. 1982 Aug;70(2):585–589. doi: 10.1104/pp.70.2.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Douce R., Christensen E. L., Bonner W. D., Jr Preparation of intaintact plant mitochondria. Biochim Biophys Acta. 1972 Aug 17;275(2):148–160. doi: 10.1016/0005-2728(72)90035-7. [DOI] [PubMed] [Google Scholar]
- Forgó I., Büchi J., Perlia X. Synthese, physikalisch-chemische Eigenschaften und antioxydative Wirkung einiger Gallussäure-ester. 3. Physikalisch-chemische Eigenschaften und antioxydative Wirksamkeit. Pharm Acta Helv. 1970 Feb;45(2):237–247. [PubMed] [Google Scholar]
- Forgó I., Büchi J. Synthese, physikalisch-chemische Eigenschaften und antioxydative Wrikung einiger Gallussäure-ester. 2. Synthese, Reinheitsprüfung und quantitative Bestimmung. Pharm Acta Helv. 1970 Feb;45(2):227–236. [PubMed] [Google Scholar]
- Grover S. D., Laties G. G. Disulfiram inhibition of the alternative respiratory pathway in plant mitochondria. Plant Physiol. 1981 Aug;68(2):393–400. doi: 10.1104/pp.68.2.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horgan D. J., Singer T. P., Casida J. E. Studies on the respiratory chain-linked reduced nicotinamide adenine dinucleotide dehydrogenase. 13. Binding sites of rotenone, piericidin A, and amytal in the respiratory chain. J Biol Chem. 1968 Feb 25;243(4):834–843. [PubMed] [Google Scholar]
- Janes H. W., Wiest S. C. Inhibition of o(2) consumption resistant to cyanide and its development by N-propyl gallate and salicylhydroxamic Acid. Plant Physiol. 1982 Sep;70(3):853–857. doi: 10.1104/pp.70.3.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Schonbaum G. R., Bonner W. D., Jr, Storey B. T., Bahr J. T. Specific inhibition of the cyanide-insensitive respiratory pathway in plant mitochondria by hydroxamic acids. Plant Physiol. 1971 Jan;47(1):124–128. doi: 10.1104/pp.47.1.124. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siedow J. N., Bickett D. M. Structural features required for inhibition of cyanide-insensitive electron transfer by propyl gallate. Arch Biochem Biophys. 1981 Mar;207(1):32–39. doi: 10.1016/0003-9861(81)90004-7. [DOI] [PubMed] [Google Scholar]
- Siedow J. N., Girvin M. E. Alternative Respiratory Pathway: ITS ROLE IN SEED RESPIRATION AND ITS INHIBITION BY PROPYL GALLATE. Plant Physiol. 1980 Apr;65(4):669–674. doi: 10.1104/pp.65.4.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tischer W., Strotmann H. Relationship between inhibitor binding by chloroplasts and inhibition of photosynthetic electron transport. Biochim Biophys Acta. 1977 Apr 11;460(1):113–125. doi: 10.1016/0005-2728(77)90157-8. [DOI] [PubMed] [Google Scholar]
