Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1984 Mar;74(3):538–544. doi: 10.1104/pp.74.3.538

H+-ATPase Activity from Storage Tissue of Beta vulgaris1

I. Identification and Characterization of an Anion-Sensitive H+-ATPase

Alan B Bennett 1,2, Sharman D O'Neill 1, Roger M Spanswick 1
PMCID: PMC1066722  PMID: 16663457

Abstract

Microsomal membranes isolated from red beet (Beta vulgaris L.) storage tissue were found to contain high levels of ionophore-stimulated ATPase activity. The distribution of this ATPase activity on a continuous sucrose gradient showed a low density peak (1.09 grams per cubic centimeter) that was stimulated over 400% by gramicidin and coincided with a peak of NO3-sensitive ATPase activity. At higher densities (1.16-1.18 grams per cubic centimeter) a shoulder of gramicidin-stimulated ATPase that coincided with a peak of vanadate-sensitive ATPase was apparent. A discontinuous sucrose gradient of 16/26/34/40% sucrose (w/w) was effective in routinely separating the NO3-sensitive ATPase (16/26% interface) from the vanadate-sensitive ATPase (34/40% interface). Both membrane fractions were shown to catalyze ATP-dependent H+ transport, with the transport process showing the same differential sensitivity to NO3 and vanadate as the ATPase activity.

Characterization of the lower density ATPase (16/26% interface) indicated that it was highly stimulated by gramicidin, inhibited by KNO3, stimulated by anions (Cl > Br > acetate > HCO3 > SO42−), and largely insensitive to monovalent cations. These characteristics are very similar to those reported for tonoplast ATPase activity and a tonoplast origin for the low density membrane vesicles was supported by comparison with isolated red beet vacuoles. The membranes isolated from the vacuole preparation were found to possess an ATPase with characteristics identical to those of the low density membrane vesicles, and were shown to have a peak density of 1.09 grams per cubic centimeter. Furthermore, following osmotic lysis the vacuolar membranes apparently resealed and ATP-dependent H+ transport could be demonstrated in these vacuole-derived membrane vesicles. This report, thus, strongly supports a tonoplast origin for the low density, anion-sensitive H+-ATPase and further indicates the presence of a higher density, vanadate-sensitive, H+-ATPase in the red beet microsomal membrane fraction, which is presumably of plasma membrane origin.

Full text

PDF
538

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boller T., Kende H. Hydrolytic enzymes in the central vacuole of plant cells. Plant Physiol. 1979 Jun;63(6):1123–1132. doi: 10.1104/pp.63.6.1123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bowman B. J., Mainzer S. E., Allen K. E., Slayman C. W. Effects of inhibitors on the plasma membrane and mitochondrial adenosine triphosphatases of Neurospora crassa. Biochim Biophys Acta. 1978 Sep 11;512(1):13–28. doi: 10.1016/0005-2736(78)90214-6. [DOI] [PubMed] [Google Scholar]
  3. Briskin D. P., Leonard R. T. Isolation of tonoplast vesicles from tobacco protoplasts. Plant Physiol. 1980 Oct;66(4):684–687. doi: 10.1104/pp.66.4.684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Briskin D. P., Poole R. J. Characterization of a k-stimulated adenosine triphosphatase associated with the plasma membrane of red beet. Plant Physiol. 1983 Feb;71(2):350–355. doi: 10.1104/pp.71.2.350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Churchill K. A., Sze H. Anion-sensitive, h-pumping ATPase in membrane vesicles from oat roots. Plant Physiol. 1983 Mar;71(3):610–617. doi: 10.1104/pp.71.3.610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dupont F. M., Bennett A. B., Spanswick R. M. Localization of a proton-translocating ATPase on sucrose gradients. Plant Physiol. 1982 Oct;70(4):1115–1119. doi: 10.1104/pp.70.4.1115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dupont F. M., Giorgi D. L., Spanswick R. M. Characterization of a proton-translocating ATPase in microsomal vesicles from corn roots. Plant Physiol. 1982 Dec;70(6):1694–1699. doi: 10.1104/pp.70.6.1694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Leigh R. A., Branton D. Isolation of Vacuoles from Root Storage Tissue of Beta vulgaris L. Plant Physiol. 1976 Nov;58(5):656–662. doi: 10.1104/pp.58.5.656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lilley R. M. Isolation of Functionally Intact Rhodoplasts from Griffithsia monilis (Ceramiaceae, Rhodophyta). Plant Physiol. 1981 Jan;67(1):5–8. doi: 10.1104/pp.67.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mandala S., Mettler I. J., Taiz L. Localization of the proton pump of corn coleoptile microsomal membranes by density gradient centrifugation. Plant Physiol. 1982 Dec;70(6):1743–1747. doi: 10.1104/pp.70.6.1743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. O'neill S. D., Bennett A. B., Spanswick R. M. Characterization of a NO(3)-Sensitive H-ATPase from Corn Roots. Plant Physiol. 1983 Jul;72(3):837–846. doi: 10.1104/pp.72.3.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Rasi-Caldogno F., de Michelis M. I., Pugliarello M. C. Evidence for an electrogenic ATPase in microsomal vesicles from pea internodes. Biochim Biophys Acta. 1981 Mar 20;642(1):37–45. doi: 10.1016/0005-2736(81)90135-8. [DOI] [PubMed] [Google Scholar]
  13. Schaffner W., Weissmann C. A rapid, sensitive, and specific method for the determination of protein in dilute solution. Anal Biochem. 1973 Dec;56(2):502–514. doi: 10.1016/0003-2697(73)90217-0. [DOI] [PubMed] [Google Scholar]
  14. Stout R. G., Cleland R. E. Evidence for a Cl-Stimulated MgATPase Proton Pump in Oat Root Membranes. Plant Physiol. 1982 Apr;69(4):798–803. doi: 10.1104/pp.69.4.798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sze H. Characterization of nigericin-stimulated ATPase from sealed microsomal vesicles of tobacco callus. Plant Physiol. 1982 Aug;70(2):498–505. doi: 10.1104/pp.70.2.498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Wagner G. J. Enzymic and protein character of tonoplast from hippeastrum vacuoles. Plant Physiol. 1981 Aug;68(2):499–503. doi: 10.1104/pp.68.2.499. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES