Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1984 Aug;75(4):891–894. doi: 10.1104/pp.75.4.891

In Vitro Characterization of Tomato Fruit Softening 1

The Use of Enzymically Active Cell Walls

James W Rushing 1, Donald J Huber 1
PMCID: PMC1067019  PMID: 16663755

Abstract

Cell wall isolated from pericarp of normal tomato (Lycopersicon esculentum Mill. cv `Rutgers') fruit released pectic polymers in a reaction apparently mediated by wall-bound polygalacturonase that appears with the onset of ripening. Release was negligible in wall preparations from normal green and the ripening mutant rin fruit. Pectin solubilization was most extensive at pH 2.5 with a less significant peak at 5.5. Brief exposure to low (1.5) or high (7.5) pH resulted in reduction of autolytic activity, which was also inhibited by high temperature, Ca2+, and treatments employed to dissociate protein from cell wall. Uronic acid solubilization was significantly enhanced by 150 millimolar NaCl and by increasing temperature within the physiological range. These data indicate that the release of polyuronide from isolated cell walls is enzymic and may provide a convenient and reliable system for the study of softening metabolism.

Full text

PDF
891

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALBERSHEIM P., NEUKOM H. DEUEL H: Splitting of pectin chain molecules in neutral solutions. Arch Biochem Biophys. 1960 Sep;90:46–51. doi: 10.1016/0003-9861(60)90609-3. [DOI] [PubMed] [Google Scholar]
  2. Blumenkrantz N., Asboe-Hansen G. New method for quantitative determination of uronic acids. Anal Biochem. 1973 Aug;54(2):484–489. doi: 10.1016/0003-2697(73)90377-1. [DOI] [PubMed] [Google Scholar]
  3. Gross K. C., Wallner S. J. Degradation of Cell Wall Polysaccharides during Tomato Fruit Ripening. Plant Physiol. 1979 Jan;63(1):117–120. doi: 10.1104/pp.63.1.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hobson G. E. Polygalacturonase in normal and abnormal tomato fruit. Biochem J. 1964 Aug;92(2):324–332. doi: 10.1042/bj0920324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kivilaan A., Beaman T. C., Bandurski R. S. Enzymatic activities associated with cell wall preparations from corn coleoptiles. Plant Physiol. 1961 Sep;36(5):605–610. doi: 10.1104/pp.36.5.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lee S. H., Kivilaan A., Bandurski R. S. In vitro autolysis of plant cell walls. Plant Physiol. 1967 Jul;42(7):968–972. doi: 10.1104/pp.42.7.968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Pressey R. beta-Galactosidases in Ripening Tomatoes. Plant Physiol. 1983 Jan;71(1):132–135. doi: 10.1104/pp.71.1.132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Themmen A. P., Tucker G. A., Grierson D. Degradation of isolated tomato cell walls by purified polygalacturonase in vitro. Plant Physiol. 1982 Jan;69(1):122–124. doi: 10.1104/pp.69.1.122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Wallner S. J., Bloom H. L. Characteristics of tomato cell wall degradation in vitro: implications for the study of fruit-softening enzymes. Plant Physiol. 1977 Aug;60(2):207–210. doi: 10.1104/pp.60.2.207. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES