Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1985 Feb;77(2):275–280. doi: 10.1104/pp.77.2.275

Endogenous Rhythms in Photosynthesis, Sucrose Phosphate Synthase Activity, and Stomatal Resistance in Leaves of Soybean (Glycine max [L.] Merr.) 1

Phillip S Kerr 1,2,3, Thomas W Rufty Jr 1,2,3, Steven C Huber 1,2,3
PMCID: PMC1064502  PMID: 16664041

Abstract

Experiments were conducted with soybean (Glycine max [L.] Merr. cv `Ransom') plants to determine if diurnal rhythms in net carbon dioxide exchange rate (CER), stomatal resistance, and sucrose-phosphate synthase (SPS) activity persisted in constant environmental conditions (constant light, LL; constant dark DD) and to assess the importance of these rhythms to the production of nonstructural carbohydrates (starch, sucrose, and hexose). Rhythms in CER, stomatal resistance, and SPS activity were observed in constant environmental conditions but the rhythms differed in period length, amplitude, and phase. The results indicated that these photosynthetic parameters are not controlled in a coordinated manner. The activity of UDPG pyrophosphorylase, another enzyme involved in sucrose formation, did not fluctuate rhythmically in constant conditions but increased with time in plants in LL. In LL, the rhythm in CER was correlated positively with fluctuations in total chlorophyll (r = 0.810) and chlorophyll a (r = 0.791) concentrations which suggested that changes in pigment concentration were associated with, but not necessarily the underlying mechanism of, the rhythm in photosynthetic rate. Assimilate export rate, net starch accumulation rate, and leaf sucrose concentration also fluctuated in constant light. No single photosynthetic parameter was closely correlated with fluctuations in assimilate export during LL; thus, assimilate export may have been controlled by interactions among the endogenous rhythms in CER, SPS activity, or other metabolic factors which were not measured in the present study.

Full text

PDF
275

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Huber S. C., Israel D. W. Biochemical Basis for Partitioning of Photosynthetically Fixed Carbon between Starch and Sucrose in Soybean (Glycine max Merr.) Leaves. Plant Physiol. 1982 Mar;69(3):691–696. doi: 10.1104/pp.69.3.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Huber S. C. Role of sucrose-phosphate synthase in partitioning of carbon in leaves. Plant Physiol. 1983 Apr;71(4):818–821. doi: 10.1104/pp.71.4.818. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Jones M. G., Outlaw W. H., Lowry O. H. Enzymic assay of 10 to 10 moles of sucrose in plant tissues. Plant Physiol. 1977 Sep;60(3):379–383. doi: 10.1104/pp.60.3.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Kerr P. S., Huber S. C., Israel D. W. Effect of N-source on soybean leaf sucrose phosphate synthase, starch formation, and whole plant growth. Plant Physiol. 1984 Jun;75(2):483–488. doi: 10.1104/pp.75.2.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Lonergan T. A. A circadian rhythm in the rate of light-induced electron flow in three leguminous species. Plant Physiol. 1981 Nov;68(5):1041–1046. doi: 10.1104/pp.68.5.1041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lonergan T. A., Sargent M. L. Regulation of the Photosynthesis Rhythm in Euglena gracilis: I. Carbonic Anhydrase and Glyceraldehyde-3-Phosphate Dehydrogenase Do Not Regulate the Photosynthesis Rhythm. Plant Physiol. 1978 Feb;61(2):150–153. doi: 10.1104/pp.61.2.150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lonergan T. A., Sargent M. L. Regulation of the Photosynthesis Rhythm in Euglena gracilis: II. Involvement of Electron Flow through Both Photosystems. Plant Physiol. 1979 Jul;64(1):99–103. doi: 10.1104/pp.64.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Pallas J. E., Samish Y. B., Willmer C. M. Endogenous rhythmic activity of photosynthesis, transpiration, dark respiration, and carbon dioxide compensation point of peanut leaves. Plant Physiol. 1974 Jun;53(6):907–911. doi: 10.1104/pp.53.6.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Pongratz P., Beck E. Diurnal oscillation of amylolytic activity in spinach chloroplasts. Plant Physiol. 1978 Nov;62(5):687–689. doi: 10.1104/pp.62.5.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Potter J. R. Maintenance of High Photosynthetic Rates during the Accumulation of High Leaf Starch Levels in Sunflower and Soybean. Plant Physiol. 1980 Sep;66(3):528–531. doi: 10.1104/pp.66.3.528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Prézelin B. B., Meeson B. W., Sweeney B. M. Characterization of photosynthetic rhythms in marine dinoflagellates: I. Pigmentation, photosynthetic capacity and respiration. Plant Physiol. 1977 Sep;60(3):384–387. doi: 10.1104/pp.60.3.384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Rufty T. W., Kerr P. S., Huber S. C. Characterization of diurnal changes in activities of enzymes involved in sucrose biosynthesis. Plant Physiol. 1983 Oct;73(2):428–433. doi: 10.1104/pp.73.2.428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Samuelsson G., Sweeney B. M., Matlick H. A., Prézelin B. B. Changes in Photosystem II Account for the Circadian Rhythm in Photosynthesis in Gonyaulax polyedra. Plant Physiol. 1983 Oct;73(2):329–331. doi: 10.1104/pp.73.2.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Stitt M., Herzog B., Heldt H. W. Control of Photosynthetic Sucrose Synthesis by Fructose 2,6-Bisphosphate : I. Coordination of CO(2) Fixation and Sucrose Synthesis. Plant Physiol. 1984 Jul;75(3):548–553. doi: 10.1104/pp.75.3.548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Stitt M., Wirtz W., Heldt H. W. Regulation of Sucrose Synthesis by Cytoplasmic Fructosebisphosphatase and Sucrose Phosphate Synthase during Photosynthesis in Varying Light and Carbon Dioxide. Plant Physiol. 1983 Jul;72(3):767–774. doi: 10.1104/pp.72.3.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Winter K. Day/Night Changes in the Sensitivity of Phosphoenolpyruvate Carboxylase to Malate during Crassulacean Acid Metabolism. Plant Physiol. 1980 May;65(5):792–796. doi: 10.1104/pp.65.5.792. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES