Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1990 Sep;94(1):375–379. doi: 10.1104/pp.94.1.375

Evidence that Isolated Developing Chloroplasts Are Capable of Synthesizing Chlorophyll b from 5-Aminolevulinic Acid 1

Laiqiang Huang 1, Neil E Hoffman 1
PMCID: PMC1077235  PMID: 16667712

Abstract

Developing chloroplasts isolated from cucumber (Cucumis sativus L. var Beit Alpha) cotyledons are capable of incorporating [14C]5-aminolevulinic acid into chlorophyll (Chl) b and Chl a when incubated under photosynthetic illumination. Thin layer chromatography and high pressure liquid chromatography were employed to analyze the pigments. The specific radioactivity in Chl a was over three times higher than that found in Chl b. Both Chl a and b synthesizing activities in organello decayed rapidly at approximately the same rate. We conclude that concomitant synthesis of Chl a/b-binding apoprotein is not required for Chl b synthesis.

Full text

PDF
375

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beale S. I., Castelfranco P. A. The Biosynthesis of delta-Aminolevulinic Acid in Higher Plants: II. Formation of C-delta-Aminolevulinic Acid from Labeled Precursors in Greening Plant Tissues. Plant Physiol. 1974 Feb;53(2):297–303. doi: 10.1104/pp.53.2.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bhaya D., Castelfranco P. A. Chlorophyll biosynthesis and assembly into chlorophyll-protein complexes in isolated developing chloroplasts. Proc Natl Acad Sci U S A. 1985 Aug;82(16):5370–5374. doi: 10.1073/pnas.82.16.5370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  5. Fufsler T. P., Castelfranco P. A., Wong Y. S. Formation of Mg-Containing Chlorophyll Precursors from Protoporphyrin IX, delta-Aminolevulinic Acid, and Glutamate in Isolated, Photosynthetically Competent, Developing Chloroplasts. Plant Physiol. 1984 Apr;74(4):928–933. doi: 10.1104/pp.74.4.928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Huang L., Castelfranco P. A. Regeneration of Magnesium-2,4-Divinylpheoporphyrin a(5) (Divinyl Protochlorophyllide) in Isolated Developing Chloroplasts. Plant Physiol. 1986 Sep;82(1):285–288. doi: 10.1104/pp.82.1.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Huang L., Castelfranco P. A. Regulation of 5-Aminolevulinic Acid (ALA) Synthesis in Developing Chloroplasts : III. Evidence for Functional Heterogeneity of the ALA Pool. Plant Physiol. 1990 Jan;92(1):172–178. doi: 10.1104/pp.92.1.172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Huang L., Castelfranco P. A. Regulation of 5-aminolevulinic Acid synthesis in developing chloroplasts : I. Effect of light/dark treatments in vivo and in organello. Plant Physiol. 1989 Jul;90(3):996–1002. doi: 10.1104/pp.90.3.996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Maloney M. A., Hoober J. K., Marks D. B. Kinetics of Chlorophyll Accumulation and Formation of Chlorophyll-Protein Complexes during Greening of Chlamydomonas reinhardtii y-1 at 38 degrees C. Plant Physiol. 1989 Nov;91(3):1100–1106. doi: 10.1104/pp.91.3.1100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Markwell J. P., Thornber J. P., Boggs R. T. Higher plant chloroplasts: Evidence that all the chlorophyll exists as chlorophyll-protein complexes. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1233–1235. doi: 10.1073/pnas.76.3.1233. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES