Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1991 Nov;97(3):1265–1267. doi: 10.1104/pp.97.3.1265

Abrupt Increase in the Level of Hydrogen Peroxide in Leaves of Winter Wheat Is Caused by Cold Treatment 1

Tohru Okuda 1, Yusuke Matsuda 1, Akira Yamanaka 1, Shonosuke Sagisaka 1
PMCID: PMC1081153  PMID: 16668520

Abstract

After cold treatment of seedlings of winter wheat (Triticum aestivum L.), levels of hydrogen peroxide in the leaves were measured. The concentration of hydrogen peroxide increased to about three times the control level within a few minutes, and returned to the normal level in 15 to 20 minutes. The elevated level of hydrogen peroxide was found to be equivalent to 1.5 micromoles per gram fresh weight tissues of leaves.

Full text

PDF
1265

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asada K., Kiso K., Yoshikawa K. Univalent reduction of molecular oxygen by spinach chloroplasts on illumination. J Biol Chem. 1974 Apr 10;249(7):2175–2181. [PubMed] [Google Scholar]
  2. Ngo T. T., Lenhoff H. M. A sensitive and versatile chromogenic assay for peroxidase and peroxidase-coupled reactions. Anal Biochem. 1980 Jul 1;105(2):389–397. doi: 10.1016/0003-2697(80)90475-3. [DOI] [PubMed] [Google Scholar]
  3. Patterson C. O., Myers J. Photosynthetic Production of Hydrogen Peroxide by Anacystis nidulans. Plant Physiol. 1973 Jan;51(1):104–109. doi: 10.1104/pp.51.1.104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Puntarulo S., Sánchez R. A., Boveris A. Hydrogen peroxide metabolism in soybean embryonic axes at the onset of germination. Plant Physiol. 1988 Feb;86(2):626–630. doi: 10.1104/pp.86.2.626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Robinson J. M., Gibbs M. Hydrogen peroxide synthesis in isolated spinach chloroplast lamellae : an analysis of the mehler reaction in the presence of NADP reduction and ATP formation. Plant Physiol. 1982 Nov;70(5):1249–1254. doi: 10.1104/pp.70.5.1249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Sagisaka S. The Occurrence of Peroxide in a Perennial Plant, Populus gelrica. Plant Physiol. 1976 Feb;57(2):308–309. doi: 10.1104/pp.57.2.308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Sagisaka S. Transition of metabolisms in living popular bark from growing to wintering stages and vice versa: changes in glucose 6-phosphate and 6-phosphogluconate dehydrogenase activities and in the levels of sugar phosphates. Plant Physiol. 1974 Oct;54(4):544–549. doi: 10.1104/pp.54.4.544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Wise R. R., Naylor A. W. Chilling-Enhanced Photooxidation : The Peroxidative Destruction of Lipids during Chilling Injury to Photosynthesis and Ultrastructure. Plant Physiol. 1987 Feb;83(2):272–277. doi: 10.1104/pp.83.2.272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Wise R. R., Naylor A. W. Chilling-enhanced photooxidation : evidence for the role of singlet oxygen and superoxide in the breakdown of pigments and endogenous antioxidants. Plant Physiol. 1987 Feb;83(2):278–282. doi: 10.1104/pp.83.2.278. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES