Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1990 Feb;421:411–424. doi: 10.1113/jphysiol.1990.sp017952

Sodium nitroprusside alters Ca2+ flux components and Ca2(+)-dependent fluxes of K+ and Cl- in rat aorta.

L Magliola 1, A W Jones 1
PMCID: PMC1190092  PMID: 1693400

Abstract

1. Sodium nitroprusside (NP) caused both an inhibition of a noradrenaline (NA)-induced contraction and an elevation of cyclic guanosine 3',5'-monophosphate (cyclic GMP) in rat aorta. Both NP-induced responses were enhanced by the selective cyclic GMP phosphodiesterase inhibitor, M&B 22948 (2-o-propoxyphenyl-8-aza-purin-6-one, 30 microM). 2. The inhibition of a NA-induced contraction by NP was characterized by dissociating the intracellular Ca2+ release component from the extracellular Ca2+ influx component of the contraction. The transient contraction stimulated by NA in the absence of extracellular Ca2+ was inhibited by NP. Also, the slowly developed tension stimulated by NA in aortas depleted of stored Ca2+ and subsequently exposed to extracellular Ca2+ was inhibited by NP. Both components of contraction were equally sensitive to NP. 3. NA stimulated both unidirectional 45Ca2+ influx in the presence of extracellular Ca2+ and 45Ca2+ efflux into a 0 Ca2+ solution that contained 2 mM-ethyleneglycol-bis-(beta-aminoethylether)N,N'-tetraacetic acid (EGTA). The increased 45Ca2+ efflux is thought to reflect release of stored Ca2+ followed by membrane transport. NP greater than 10 nM inhibited both 45Ca2+ influx and release components whereas NP at 1-3 nM enhanced NA-stimulated 45Ca2+ efflux and relaxed the maintained tension caused by NA in 0 Ca2+, 2 mM-EGTA. 4. NP also inhibited the Ca2(+)-dependent 42K+ and 36Cl- effluxes from rat aorta stimulated either by NA or by high potassium. NP inhibited the contractile and flux responses to NA more effectively than the responses to high potassium. 5. These data indicate that: (1) NP reduces cytosolic Ca2+ by the combined inhibitory effects on Ca2+ influx and intracellular Ca2+ release, and by the stimulation of a Ca2(+)-ATPase; and (2) the differential sensitivity of the NA and high-potassium responses to NP may reflect underlying differences in Ca2+ handling induced by receptor occupancy and depolarization.

Full text

PDF
411

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barish M. E. A transient calcium-dependent chloride current in the immature Xenopus oocyte. J Physiol. 1983 Sep;342:309–325. doi: 10.1113/jphysiol.1983.sp014852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bond M., Kitazawa T., Somlyo A. P., Somlyo A. V. Release and recycling of calcium by the sarcoplasmic reticulum in guinea-pig portal vein smooth muscle. J Physiol. 1984 Oct;355:677–695. doi: 10.1113/jphysiol.1984.sp015445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chatterjee M., Murphy R. A. Calcium-dependent stress maintenance without myosin phosphorylation in skinned smooth muscle. Science. 1983 Jul 29;221(4609):464–466. doi: 10.1126/science.6867722. [DOI] [PubMed] [Google Scholar]
  4. Collins P., Griffith T. M., Henderson A. H., Lewis M. J. Endothelium-derived relaxing factor alters calcium fluxes in rabbit aorta: a cyclic guanosine monophosphate-mediated effect. J Physiol. 1986 Dec;381:427–437. doi: 10.1113/jphysiol.1986.sp016336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Deth R., van Breemen C. Agonist induced release of intracellular Ca2+ in the rabbit aorta. J Membr Biol. 1977 Jan 28;30(4):363–380. doi: 10.1007/BF01869677. [DOI] [PubMed] [Google Scholar]
  6. Furukawa K., Nakamura H. Cyclic GMP regulation of the plasma membrane (Ca2+-Mg2+)ATPase in vascular smooth muscle. J Biochem. 1987 Jan;101(1):287–290. doi: 10.1093/oxfordjournals.jbchem.a121904. [DOI] [PubMed] [Google Scholar]
  7. Furukawa K., Tawada Y., Shigekawa M. Regulation of the plasma membrane Ca2+ pump by cyclic nucleotides in cultured vascular smooth muscle cells. J Biol Chem. 1988 Jun 15;263(17):8058–8065. [PubMed] [Google Scholar]
  8. Godfraind T. EDRF and cyclic GMP control gating of receptor-operated calcium channels in vascular smooth muscle. Eur J Pharmacol. 1986 Jul 31;126(3):341–343. doi: 10.1016/0014-2999(86)90070-1. [DOI] [PubMed] [Google Scholar]
  9. Hester R. K., Weiss G. B., Fry W. J. Differing actions of nitroprusside and D-600 on tension and 45Ca fluxes in canine renal arteries. J Pharmacol Exp Ther. 1979 Jan;208(1):155–160. [PubMed] [Google Scholar]
  10. Johnson R. M., Lincoln T. M. Effects of nitroprusside, glyceryl trinitrate, and 8-bromo cyclic GMP on phosphorylase a formation and myosin light chain phosphorylation in rat aorta. Mol Pharmacol. 1985 Mar;27(3):333–342. [PubMed] [Google Scholar]
  11. Kai H., Kanaide H., Matsumoto T., Nakamura M. 8-Bromoguanosine 3':5'-cyclic monophosphate decreases intracellular free calcium concentrations in cultured vascular smooth muscle cells from rat aorta. FEBS Lett. 1987 Sep 14;221(2):284–288. doi: 10.1016/0014-5793(87)80941-9. [DOI] [PubMed] [Google Scholar]
  12. Kobayashi S., Kanaide H., Nakamura M. Cytosolic-free calcium transients in cultured vascular smooth muscle cells: microfluorometric measurements. Science. 1985 Aug 9;229(4713):553–556. doi: 10.1126/science.3927484. [DOI] [PubMed] [Google Scholar]
  13. Kreye V. A., Forssmann W. G., Gerstheimer F. Inhibition of noradrenaline-stimulated 86Rb/K+-exchange in vascular smooth muscle by porcine vasorelaxant atrial peptide, cardiodilatin-88. Regul Pept Suppl. 1985;4:141–143. [PubMed] [Google Scholar]
  14. Leijten P. A., van Breemen C. The effects of caffeine on the noradrenaline-sensitive calcium store in rabbit aorta. J Physiol. 1984 Dec;357:327–339. doi: 10.1113/jphysiol.1984.sp015502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lincoln T. M. Effects of nitroprusside and 8-bromo-cyclic GMP on the contractile activity of the rat aorta. J Pharmacol Exp Ther. 1983 Jan;224(1):100–107. [PubMed] [Google Scholar]
  16. Loutzenhiser R., van Breemen C. The influence of receptor occupation on Ca++ influx-mediated vascular smooth muscle contraction. Circ Res. 1983 Feb;52(2 Pt 2):I97–103. [PubMed] [Google Scholar]
  17. Lugnier C., Schoeffter P., Le Bec A., Strouthou E., Stoclet J. C. Selective inhibition of cyclic nucleotide phosphodiesterases of human, bovine and rat aorta. Biochem Pharmacol. 1986 May 15;35(10):1743–1751. doi: 10.1016/0006-2952(86)90333-3. [DOI] [PubMed] [Google Scholar]
  18. Magliola L., Jones A. W. Depolarization-stimulated 42K+ efflux in rat aorta is calcium- and cellular volume-dependent. Circ Res. 1987 Jul;61(1):1–11. doi: 10.1161/01.res.61.1.1. [DOI] [PubMed] [Google Scholar]
  19. Meisheri K. D., Hwang O., van Breemen C. Evidence for two separated Ca2+ pathways in smooth muscle plasmalemma. J Membr Biol. 1981 Mar 15;59(1):19–25. doi: 10.1007/BF01870817. [DOI] [PubMed] [Google Scholar]
  20. Meisheri K. D., Taylor C. J., Saneii H. Synthetic atrial peptide inhibits intracellular calcium release in smooth muscle. Am J Physiol. 1986 Jan;250(1 Pt 1):C171–C174. doi: 10.1152/ajpcell.1986.250.1.C171. [DOI] [PubMed] [Google Scholar]
  21. Morgan J. P., Morgan K. G. Stimulus-specific patterns of intracellular calcium levels in smooth muscle of ferret portal vein. J Physiol. 1984 Jun;351:155–167. doi: 10.1113/jphysiol.1984.sp015239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Popescu L. M., Panoiu C., Hinescu M., Nutu O. The mechanism of cGMP-induced relaxation in vascular smooth muscle. Eur J Pharmacol. 1985 Jan 8;107(3):393–394. doi: 10.1016/0014-2999(85)90269-9. [DOI] [PubMed] [Google Scholar]
  23. Rashatwar S. S., Cornwell T. L., Lincoln T. M. Effects of 8-bromo-cGMP on Ca2+ levels in vascular smooth muscle cells: possible regulation of Ca2+-ATPase by cGMP-dependent protein kinase. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5685–5689. doi: 10.1073/pnas.84.16.5685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schwarz W., Passow H. Ca2+-activated K+ channels in erythrocytes and excitable cells. Annu Rev Physiol. 1983;45:359–374. doi: 10.1146/annurev.ph.45.030183.002043. [DOI] [PubMed] [Google Scholar]
  25. Smith J. M., Jones A. W. Calcium-dependent fluxes of potassium-42 and chloride-36 during norepinephrine activation of rat aorta. Circ Res. 1985 Apr;56(4):507–516. doi: 10.1161/01.res.56.4.507. [DOI] [PubMed] [Google Scholar]
  26. Suematsu E., Hirata M., Kuriyama H. Effects of cAMP- and cGMP-dependent protein kinases, and calmodulin on Ca2+ uptake by highly purified sarcolemmal vesicles of vascular smooth muscle. Biochim Biophys Acta. 1984 Jun 13;773(1):83–90. doi: 10.1016/0005-2736(84)90552-2. [DOI] [PubMed] [Google Scholar]
  27. Taylor C. J., Meisheri K. D. Inhibitory effects of a synthetic atrial peptide on contractions and 45Ca fluxes in vascular smooth muscle. J Pharmacol Exp Ther. 1986 Jun;237(3):803–808. [PubMed] [Google Scholar]
  28. Twort C. H., van Breemen C. Cyclic guanosine monophosphate-enhanced sequestration of Ca2+ by sarcoplasmic reticulum in vascular smooth muscle. Circ Res. 1988 May;62(5):961–964. doi: 10.1161/01.res.62.5.961. [DOI] [PubMed] [Google Scholar]
  29. Waldman S. A., Murad F. Cyclic GMP synthesis and function. Pharmacol Rev. 1987 Sep;39(3):163–196. [PubMed] [Google Scholar]
  30. Wallenstein S., Zucker C. L., Fleiss J. L. Some statistical methods useful in circulation research. Circ Res. 1980 Jul;47(1):1–9. doi: 10.1161/01.res.47.1.1. [DOI] [PubMed] [Google Scholar]
  31. Williams J. S., Tsutakawa R. K., Hewett J. E. Quick test for comparing two populations with bivariate data. Biometrics. 1977 Mar;33(1):215–219. [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES