Abstract
The surface morphology of attached and suspended normal and transformed fibroblasts has been studied with the scanning electron microscope. Normal murine fibroblasts (3T3) grow in vitro with widely extended leading lamellae. During most parts of the cell cycle the surfaces of these cells are practically free of microvilli. When the cells round up for mitosis, their cell surfaces become adorned with many microvilli. In contrast, simian virus 40-transformed fibroblasts (SV3T3) grow more compact, and their cell surfaces remain smooth throughout the life cycle. When confluent 3T3 and SV3T3 cells are suspended with ethylenediaminetetraacetic acid (EDTA) for agglutination assays, similar differences in surface morphology are found: 3T3 cells always bear many microvilli, whereas most SV3T3 cells are essentially free of microvilli. The addition of concanavalin A (Con A) does not influence the surface morphology of the suspended cells. The morphological differences described here may be important for the agglutination process of the normal and transformed 3T3 cells, because they affect the real cell surface area and thus the density of Con A-binding sites.
Full Text
The Full Text of this article is available as a PDF (4.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abercrombie M., Heaysman J. E., Pegrum S. M. The locomotion of fibroblasts in culture. 3. Movements of particles on the dorsal surface of the leading lamella. Exp Cell Res. 1970 Oct;62(2):389–398. doi: 10.1016/0014-4827(70)90570-7. [DOI] [PubMed] [Google Scholar]
- Abercrombie M., Heaysman J. E., Pegrum S. M. The locomotion of fibroblasts in culture. I. Movements of the leading edge. Exp Cell Res. 1970 Mar;59(3):393–398. doi: 10.1016/0014-4827(70)90646-4. [DOI] [PubMed] [Google Scholar]
- Arndt-Jovin D. J., Berg P. Quantitative binding of 125 I-concanavalin A to normal and transformed cells. J Virol. 1971 Nov;8(5):716–721. doi: 10.1128/jvi.8.5.716-721.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barnett R. E., Furcht L. T., Scott R. E. Differences in membrane fluidity and structure in contact-inhibited and transformed cells. Proc Natl Acad Sci U S A. 1974 May;71(5):1992–1994. doi: 10.1073/pnas.71.5.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burger M. M. A difference in the architecture of the surface membrane of normal and virally transformed cells. Proc Natl Acad Sci U S A. 1969 Mar;62(3):994–1001. doi: 10.1073/pnas.62.3.994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burger M. M. Surface changes in transformed cells detected by lectins. Fed Proc. 1973 Jan;32(1):91–101. [PubMed] [Google Scholar]
- Cline M. J., Livingston D. C. Binding of 3 H-concanavalin A by normal and transformed cells. Nat New Biol. 1971 Aug 4;232(31):155–156. doi: 10.1038/newbio232155a0. [DOI] [PubMed] [Google Scholar]
- Collard J. G., Smets L. A. Effect of proteolytic inhibitors on growth and surface architecture of normal and transformed cells. Exp Cell Res. 1974 May;86(1):75–80. doi: 10.1016/0014-4827(74)90650-8. [DOI] [PubMed] [Google Scholar]
- Collard J. G., Temmink J. H. Differences in density of Concanavalin A-binding sites due to differences in surface morphology of suspended normal and transformed 3T3 fibroblasts. J Cell Sci. 1975 Oct;19(1):21–32. doi: 10.1242/jcs.19.1.21. [DOI] [PubMed] [Google Scholar]
- Dalen H., Todd P. W. Surface morphology of trypsinized human cells in vitro. Exp Cell Res. 1971 Jun;66(2):353–361. doi: 10.1016/0014-4827(71)90688-4. [DOI] [PubMed] [Google Scholar]
- De Petris S., Raff M. C., Mallucci L. Ligand-induced redistribution of concanavalin A receptors on normal, trypsinized and transformed fibroblasts. Nat New Biol. 1973 Aug 29;244(139):275–278. doi: 10.1038/newbio244275a0. [DOI] [PubMed] [Google Scholar]
- Follett E. A., Goldman R. D. The occurrence of microvilli during spreading and growth of BHK21-C13 fibroblasts. Exp Cell Res. 1970 Jan;59(1):124–136. doi: 10.1016/0014-4827(70)90631-2. [DOI] [PubMed] [Google Scholar]
- Inbar M., Sachs L. Interaction of the carbohydrate-binding protein concanavalin A with normal and transformed cells. Proc Natl Acad Sci U S A. 1969 Aug;63(4):1418–1425. doi: 10.1073/pnas.63.4.1418. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nicolson G. L. Temperature-dependent mobility of concanavalin A sites on tumour cell surfaces. Nat New Biol. 1973 Jun 13;243(128):218–220. doi: 10.1038/newbio243218a0. [DOI] [PubMed] [Google Scholar]
- Nicolson G. L. The interactions of lectins with animal cell surfaces. Int Rev Cytol. 1974;39:89–190. doi: 10.1016/s0074-7696(08)60939-0. [DOI] [PubMed] [Google Scholar]
- Noonan K. D., Burger M. M. Binding of ( 3 H)concanavalin A to normal and transformed cells. J Biol Chem. 1973 Jun 25;248(12):4286–4292. [PubMed] [Google Scholar]
- Noonan K. D., Levine A. J., Burger M. M. Cell cycle-dependent changes in the surface membrane as detected with (3H)concanavalin A. J Cell Biol. 1973 Aug;58(2):491–497. doi: 10.1083/jcb.58.2.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ozanne B., Sambrook J. Binding of radioactively labelled concanavalin A and wheat germ agglutinin to normal and virus-transformed cells. Nat New Biol. 1971 Aug 4;232(31):156–160. doi: 10.1038/newbio232156a0. [DOI] [PubMed] [Google Scholar]
- Porter K. R., Todaro G. J., Fonte V. A scanning electron microscope study of surface features of viral and spontaneous transformants of mouse Balb-3T3 cells. J Cell Biol. 1973 Dec;59(3):633–642. doi: 10.1083/jcb.59.3.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Porter K., Prescott D., Frye J. Changes in surface morphology of Chinese hamster ovary cells during the cell cycle. J Cell Biol. 1973 Jun;57(3):815–836. doi: 10.1083/jcb.57.3.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Poste G., Reeve P. Increased mobility and redistribution of concanavalin A receptors on cells infected with Newcastle disease virus. Nature. 1974 Feb 15;247(5441):469–471. doi: 10.1038/247469a0. [DOI] [PubMed] [Google Scholar]
- Rosenblith J. Z., Ukena T. E., Yin H. H., Berlin R. D., Karnovsky M. J. A comparative evaluation of the distribution of concanavalin A-binding sites on the surfaces of normal, virally-transformed, and protease-treated fibroblasts. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1625–1629. doi: 10.1073/pnas.70.6.1625. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rubin R. W., Everhart L. P. The effect of cell-to-cell contact on the surface morphology of Chinese hamster ovary cells. J Cell Biol. 1973 Jun;57(3):837–844. doi: 10.1083/jcb.57.3.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Singer S. J., Nicolson G. L. The fluid mosaic model of the structure of cell membranes. Science. 1972 Feb 18;175(4023):720–731. doi: 10.1126/science.175.4023.720. [DOI] [PubMed] [Google Scholar]
- Smets L. A., De Ley L. Cell cycle dependent modulations of the surface membrane of normal and SV40 virus transformed 3T3 cells. J Cell Physiol. 1974 Dec;84(3):343–348. doi: 10.1002/jcp.1040840303. [DOI] [PubMed] [Google Scholar]
- Smith S. B., Revel J. P. Mapping of concanavalin A binding sites on the surface of several cell types. Dev Biol. 1972 Mar;27(3):434–441. doi: 10.1016/0012-1606(72)90183-2. [DOI] [PubMed] [Google Scholar]
- Temmink J. H., Collard J. G., Spits H., Roos E. A comparative study of four cytochemical detection methods of concanavalin A binding sites on the cell membrane. Exp Cell Res. 1975 May;92(2):307–322. doi: 10.1016/0014-4827(75)90385-7. [DOI] [PubMed] [Google Scholar]