Abstract
Endothelin (ET), originally characterized as a vasoconstrictive peptide, has been found to have many different biological functions, including acting as a local hormonal regulator of pressure, fluid, ions and neurotransmitters in the inner ear. The objective of this study was to examine and quantify the mRNA expression of the endothelin type A and B receptors (ETAR and ETBR) in the strial vascularies (StV) and non-strial tissues (NSt) of the cochlear lateral wall using the real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR) technique. The mouse tissue samples were harvested and RNA was extracted. RT was performed to obtain cDNA, and then the mRNA expression of each gene was measured via real-time PCR. We found that both receptor subtypes were expressed in the cochlear lateral wall, with a predominance of ETAR over ETBR. We showed that the mRNA expression of the two receptor subtypes was higher in the StV with a 1.8 times higher level of ETAR and an 8.1 times higher level of ETBR mRNAs than in the adjacent NSt of the lateral wall tissue. This study shows the existence and the quantity of ET receptor subtypes in the StV and NSt of the mouse cochlea. Our results suggest that an endothelin-mediated response via two different receptors, ETAR and ETBR, may play an important role in the physiological functions of the cochlear lateral wall by maintaining the homeostatic environment of the cochlea.
Key words: ETAR, ETBR, Real time quantitative RT-PCR, Cochlea
Full Text
The Full Text of this article is available as a PDF (473.0 KB).
Abbreviations used
- ANP
atrial natriuretic peptide
- Ct
cycle threshold
- ET
endothelin
- ETAR
endothelin type A receptor
- ETBR
endothelin type B receptor
- NO
nitric oxide
- NSt
non-strial tissues
- PG
prostaglandins
- RQ
relative quantity
- RT-PCR
reverse transcription-polymerase chain reaction
- StV
strial vascularies
References
- 1.Yanagisawa M., Kurihara H., Kimura S., Tomobe Y., Kobayashi M., Mitui Y., Azaki Y., Goto K., Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988;33:411–415. doi: 10.1038/332411a0. [DOI] [PubMed] [Google Scholar]
- 2.Hosoda K., Hammer R.E., Richardson J.A., Baynash A.G., Joto H., McCarron R.M., Inoue A., Yanagisawa M., Kimura S. The human endothelin family: three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc. Natl. Acad. 1989;86:2863–2867. doi: 10.1073/pnas.86.8.2863. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Levin E.R. Endothelins. N. Engl. J. Med. 1995;333:356–363. doi: 10.1056/NEJM199508103330607. [DOI] [PubMed] [Google Scholar]
- 4.Masaki T., Kimura S., Yanagisawa M., Goto K. Molecular and cellular mechanism of endothelin regulation: implications for vascular function. Circulation. 1991;84:1457–1468. doi: 10.1161/01.cir.84.4.1457. [DOI] [PubMed] [Google Scholar]
- 5.Haynes W.G., Webb D.J. Endothelin as a regulator of cardiovascular function in health and disease. J. Hypertens. 1998;16:1081–1089. doi: 10.1097/00004872-199816080-00001. [DOI] [PubMed] [Google Scholar]
- 6.Brown M.A., Smith P.L. Endothelin: a potent stimulator of intestinal ion secretion in vitro. Regul. Pept. 1991;36:1–19. doi: 10.1016/0167-0115(91)90191-I. [DOI] [PubMed] [Google Scholar]
- 7.Shichiri M., Hirata Y., Nakajima T., Ando K., Imai T., Yanagisawa M. Endothelin-1 is an autocrine/paracrine growth factor for human cancer cell lines. J. Clin. Invest. 1991;87:1867–1871. doi: 10.1172/JCI115210. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Matsuura A., Yamochi W., Hirata K., Kawashima S., Yokoyama M. Stimulatory interaction between vascular endothelial growth factor and endothelin-1 on each gene expression. Hypertension. 1998;32:89–95. doi: 10.1161/01.hyp.32.1.89. [DOI] [PubMed] [Google Scholar]
- 9.Evans J.J., Youssef A.H., Yandle T.G., Lewis L.K., Nicholls M.G. Effects of endothelin-1 on release of adrenomedullin and C-type natriuretic peptide from individual human vascular endothelial cells. J. Endocrinol. 2002;175:225–232. doi: 10.1677/joe.0.1750225. [DOI] [PubMed] [Google Scholar]
- 10.Jinnouchi K., Tomiyama S., Pawankar S. Distribution of endothelin-1-like activity in the cochlea of normal guinea pigs. Acta Otolaryngol. 1997;117:41–45. doi: 10.3109/00016489709117989. [DOI] [PubMed] [Google Scholar]
- 11.Jinnouchi K., Tomiyama S., Pawankar R. Distribution of endothelin-1-like activity in the vestibule of normal guinea pigs. ORL J. Otorhinolaryngol. Relat. Spec. 1996;58:4–8. doi: 10.1159/000276786. [DOI] [PubMed] [Google Scholar]
- 12.Jinnouchi K., Tomiyama S., Pawankar R. Distribution of endothelin-1 like activity in the endolymphatic sac of normal guinea pigs. Acta Otolaryngol. 1995;115:400–404. doi: 10.3109/00016489509139337. [DOI] [PubMed] [Google Scholar]
- 13.Fujimura T., Furukawa H., Doi Y., Makishima K., Fujimoto S. Immunoreactivity of endothelins and endothelin receptor in the stria vascularis of the mouse cochlea. Hear. Res. 1999;128:135–146. doi: 10.1016/S0378-5955(98)00206-8. [DOI] [PubMed] [Google Scholar]
- 14.Xu X.N., Huang J.M., Lin G.J., Jiang Z.Z. Contributions of endothelin in the process of the noise-induced in jury of inner ear. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2005;40:509–512. [PubMed] [Google Scholar]
- 15.Higuchi R., Fockler C., Dollinger G., Watson R. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Mar. Biotechnol. 1993;11:1026–1030. doi: 10.1038/nbt0993-1026. [DOI] [PubMed] [Google Scholar]
- 16.Livak K., Schmittgen T. Analysis of relative gene expression data using real-time quantitative PCR and the 2−δδCt method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. [DOI] [PubMed] [Google Scholar]
- 17.Marcus D.C., Chiba T. K+ and Na+ absorption by outer sulcus epithelial cells. Hear. Res. 1999;134:48–56. doi: 10.1016/S0378-5955(99)00074-X. [DOI] [PubMed] [Google Scholar]
- 18.Wangemann P. K+ cycling and its regulation in the Cochlea and the vestibular labyrinth. Audiol. Neurootol. 2002;7:199–205. doi: 10.1159/000063736. [DOI] [PubMed] [Google Scholar]
- 19.Franz P., Hauser-Kronberger C., Egerbacher M. Localization of endothelin-1 and endothelin-3 in the cochlea. Acta Otolaryngol. 1997;117:358–362. doi: 10.3109/00016489709113407. [DOI] [PubMed] [Google Scholar]
- 20.Sadanaga M., Liu J., Wangemann P. Endothelin-A receptors mediate vasoconstriction of capillaries in the spiral ligament. Hear. Res. 1997;112:106–114. doi: 10.1016/S0378-5955(97)00121-4. [DOI] [PubMed] [Google Scholar]
- 21.Haynes W., Strachan F., Webb D. Endothelin ETAR and ETBR receptors cause vasoconst riction of human resistance and capacitance vessels in vivo. Circulation. 1995;92:357–363. doi: 10.1161/01.cir.92.3.357. [DOI] [PubMed] [Google Scholar]
- 22.Kobayshi T., Miyauchi T., Sakai S., Maeda S., Yamaguchi I., Goto K. Down-regulation of ET(B) receptor, but not ET(A) receptor, in congestive lung secondary to heart failure. Are marked increases in circulating endothelin-1 partly attributable to decreases in lung ET(B) receptor-mediated clearance of endothelin-1? Life Sci. 1998;62:185–193. doi: 10.1016/S0024-3205(97)01064-3. [DOI] [PubMed] [Google Scholar]
