Abstract
The rate and mechanism of autoxidation of soluble ferrocytochrome b5, prepared from liver microsomal suspensions, appear to reflect an intrinsic property of membrane-bound cytochrome b5. The first-order rate constant for autoxidation of trypsin-cleaved ferrocytochrome b5, prepared by reduction with dithionite, was 2.00 X 10(-3) +/- 0.19 X 10(-3) S-1 (mean +/- S.E.M., n =8) when measured at 30 degrees C in 10 mM-phosphate buffer, pH 7.4. At 37 degrees C in aerated 10 mM-phosphate buffer (pH 7.4)/0.15 M-KCl, the rate constant was 5.6 X 10(-3) S-1. The autoxidation reaction was faster at lower pH values and at high ionic strengths. Unlike ferromyoglobin, the autoxidation reaction of which is maximal at low O2 concentrations, autoxidation of ferrocytochrome b5 showed a simple O2-dependence with an apparent Km for O2 of 2.28 X 10(-4) M (approx. 20kPa or 150mmHg)9 During autoxidation, 0.25 mol of O2 was consumed per mol of cytochrome oxidized. Cyanide, nucleophilic anions, EDTA and catalase each had little or no effect on autoxidation rates. Adrenaline significantly enhanced autoxidation rates, causing a tenfold increase at 0.6 mM. Ferrocytochrome b5 reduced an excess of cytochrome c in a biphasic manner. An initial rapid phase, independent of O2 concentration, was unaffected by superoxide dismutase. A subsequent slower phase, which continued for up to 60 min, was retarded at low O2 concentrations and inhibited by 65% by superoxide dismutase at a concentration of 3 mug/ml. It is concluded that autoxidation is responsible for a significant proportion of electron flow between cytochrome b5 and O2 in liver endoplasmic membranes, this reaction being capable of generating superoxide anions. A biological role for the reaction is discussed.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ANTONINI E. INTERRELATIONSHIP BETWEEN STRUCTURE AND FUNCTION IN HEMOGLOBIN AND MYOGLOBIN. Physiol Rev. 1965 Jan;45:123–170. doi: 10.1152/physrev.1965.45.1.123. [DOI] [PubMed] [Google Scholar]
- Argos P., Mathews F. S. The structure of ferrocytochrome b5 at 2.8 A resolution. J Biol Chem. 1975 Jan 25;250(2):747–751. [PubMed] [Google Scholar]
- Aust S. D., Roerig D. L., Pederson T. C. Evidence for superoxide generation by NADPH-cytochrome c reductase of rat liver microsomes. Biochem Biophys Res Commun. 1972 Jun 9;47(5):1133–1137. doi: 10.1016/0006-291x(72)90952-7. [DOI] [PubMed] [Google Scholar]
- Barlow C. H., Maxwell J. C., Wallace W. J., Caughey W. S. Elucidation of the mode of binding of oxygen to iron in oxyhemoglobin by in frared spectroscopy. Biochem Biophys Res Commun. 1973 Nov 1;55(1):91–96. doi: 10.1016/s0006-291x(73)80063-4. [DOI] [PubMed] [Google Scholar]
- Berman M. C., Ivanetich K. M., Kench J. E. The effects of halothane on hepatic microsomal electron transfer. Biochem J. 1975 May;148(2):179–186. doi: 10.1042/bj1480179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boveris A., Chance B. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J. 1973 Jul;134(3):707–716. doi: 10.1042/bj1340707. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boveris A., Oshino N., Chance B. The cellular production of hydrogen peroxide. Biochem J. 1972 Jul;128(3):617–630. doi: 10.1042/bj1280617. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown W. D., Mebine L. B. Autoxidation of oxymyoglobins. J Biol Chem. 1969 Dec 25;244(24):6696–6701. [PubMed] [Google Scholar]
- Cassell R. H., Fridovich I. The role of superoxide radical in the autoxidation of cytochrome c. Biochemistry. 1975 May 6;14(9):1866–1868. doi: 10.1021/bi00680a010. [DOI] [PubMed] [Google Scholar]
- FRIDOVICH I., HANDLER P. Detection of free radicals generated during enzymic oxidations by the initiation of sulfite oxidation. J Biol Chem. 1961 Jun;236:1836–1840. [PubMed] [Google Scholar]
- Fried R., Fried L. W., Babin D. R. Biological role of xanthine oxidase and tetrazolium-reductase inhibitor. Eur J Biochem. 1973 Mar 15;33(3):439–445. doi: 10.1111/j.1432-1033.1973.tb02701.x. [DOI] [PubMed] [Google Scholar]
- GEORGE P., STRATMANN C. J. The oxidation of myoglobin to metmyglobin by oxygen. 2. The relation between the first order rate constant and the partial pressure of oxygen. Biochem J. 1952 Jun;51(3):418–425. doi: 10.1042/bj0510418. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HENDERSON R. W., RAWLINSON W. A. Potentiometric and other studies on preparations of cytochrome c from ox- and horse-heart muscle. Biochem J. 1956 Jan;62(1):21–29. doi: 10.1042/bj0620021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hildebrandt A., Estabrook R. W. Evidence for the participation of cytochrome b 5 in hepatic microsomal mixed-function oxidation reactions. Arch Biochem Biophys. 1971 Mar;143(1):66–79. doi: 10.1016/0003-9861(71)90186-x. [DOI] [PubMed] [Google Scholar]
- Hultquist D. E., Passon P. G. Catalysis of methaemoglobin reduction by erythrocyte cytochrome B5 and cytochrome B5 reductase. Nat New Biol. 1971 Feb 24;229(8):252–254. doi: 10.1038/newbio229252a0. [DOI] [PubMed] [Google Scholar]
- Ito A., Sato R. Purification by means of detergents and properties of cytochrome b5 from liver microsomes. J Biol Chem. 1968 Sep 25;243(18):4922–4923. [PubMed] [Google Scholar]
- Mathews F. S., Levine M., Argos P. Three-dimensional Fourier synthesis of calf liver cytochrome b 5 at 2-8 A resolution. J Mol Biol. 1972 Mar 14;64(2):449–464. doi: 10.1016/0022-2836(72)90510-4. [DOI] [PubMed] [Google Scholar]
- McCord J. M., Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969 Nov 25;244(22):6049–6055. [PubMed] [Google Scholar]
- Misra H. P., Fridovich I. The generation of superoixide radical during the autoxidation of ferredoxins. J Biol Chem. 1971 Nov 25;246(22):6886–6890. [PubMed] [Google Scholar]
- Misra H. P., Fridovich I. The generation of superoxide radical during the autoxidation of hemoglobin. J Biol Chem. 1972 Nov 10;247(21):6960–6962. [PubMed] [Google Scholar]
- Nishikimi M. The generation of superoxide anion in the reaction of tetrahydropteridines with molecular oxygen. Arch Biochem Biophys. 1975 Jan;166(1):273–279. doi: 10.1016/0003-9861(75)90388-4. [DOI] [PubMed] [Google Scholar]
- Omura T., Takesue S. A new method for simultaneous purification of cytochrome b5 and NADPH-cytochrome c reductase from rat liver microsomes. J Biochem. 1970 Feb;67(2):249–257. doi: 10.1093/oxfordjournals.jbchem.a129248. [DOI] [PubMed] [Google Scholar]
- Oshino N., Imai Y., Sato R. A function of cytochrome b5 in fatty acid desaturation by rat liver microsomes. J Biochem. 1971 Jan;69(1):155–167. doi: 10.1093/oxfordjournals.jbchem.a129444. [DOI] [PubMed] [Google Scholar]
- Ozols J. Cytochrome b 5 from a normal human liver. Isolation and the partial amino acid sequence. J Biol Chem. 1972 Apr 10;247(7):2242–2245. [PubMed] [Google Scholar]
- Ozols J. Cytochrome b5 from microsomal membranes of equine, bovine, and porcine livers. Isolation and properties of preparations containing the membranous segment. Biochemistry. 1974 Jan 29;13(3):426–434. doi: 10.1021/bi00700a005. [DOI] [PubMed] [Google Scholar]
- Ozols J., Strittmatter P. The amino acid sequence of cytochrome b-5. J Biol Chem. 1968 Jun 25;243(12):3376–3381. [PubMed] [Google Scholar]
- Peisach J., Blumberg W. E., Wittenberg B. A., Wittenberg J. B. The electronic structure of protoheme proteins. 3. Configuration of the heme and its ligands. J Biol Chem. 1968 Apr 25;243(8):1871–1880. [PubMed] [Google Scholar]
- Phelps C. F., Antonini E., Giacometti G., Brunori M. The kinetics of oxidation of ferroperoxidase by molecular oxygen. A model of a terminal oxidase. Biochem J. 1974 Jul;141(1):265–272. doi: 10.1042/bj1410265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robinson N. C., Tanford C. The binding of deoxycholate, Triton X-100, sodium dodecyl sulfate, and phosphatidylcholine vesicles to cytochrome b5. Biochemistry. 1975 Jan 28;14(2):369–378. doi: 10.1021/bi00673a025. [DOI] [PubMed] [Google Scholar]
- Rossmann M. G., Argos P. A comparison of the heme binding pocket in globins and cytochrome b5. J Biol Chem. 1975 Sep 25;250(18):7525–7532. [PubMed] [Google Scholar]
- Salemme F. R., Kraut J., Kamen M. D. Structural bases for function in cytochromes c. An interpretation of comparative x-ray and biochemical data. J Biol Chem. 1973 Nov 25;248(22):7701–7716. [PubMed] [Google Scholar]
- Spatz L., Strittmatter P. A form of cytochrome b5 that contains an additional hydrophobic sequence of 40 amino acid residues. Proc Natl Acad Sci U S A. 1971 May;68(5):1042–1046. doi: 10.1073/pnas.68.5.1042. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strittmatter P., Spatz L., Corcoran D., Rogers M. J., Setlow B., Redline R. Purification and properties of rat liver microsomal stearyl coenzyme A desaturase. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4565–4569. doi: 10.1073/pnas.71.11.4565. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strobel H. W., Coon M. J. Effect of superoxide generation and dismutation on hydroxylation reactions catalyzed by liver microsomal cytochrome P-450. J Biol Chem. 1971 Dec 25;246(24):7826–7829. [PubMed] [Google Scholar]
- Takano T., Kallai O. B., Swanson R., Dickerson R. E. The structure of ferrocytochrome c at 2.45 A resolution. J Biol Chem. 1973 Aug 10;248(15):5234–5255. [PubMed] [Google Scholar]
- VELICK S. F., STRITTMATTER P. The oxidation-reduction stoichiometry and potential of microsomal cytochrome. J Biol Chem. 1956 Jul;221(1):265–275. [PubMed] [Google Scholar]
- WEISS J. J. NATURE OF THE IRON-OXYGEN BOND IN OXYHAEMOGLOBIN. Nature. 1964 Apr 4;202:83–84. doi: 10.1038/202083b0. [DOI] [PubMed] [Google Scholar]
- Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
- Yammoto T., Palmer G. The valence and spin state of iron in oxyhemoglobin as inferred from resonance Raman spectroscopy. J Biol Chem. 1973 Jul 25;248(14):5211–5213. [PubMed] [Google Scholar]