Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1976 Sep;73(9):3122–3125. doi: 10.1073/pnas.73.9.3122

Incorporation of adenosine into ATP: formation of compartmentalized ATP.

E Rapaport, P C Zamecnik
PMCID: PMC430951  PMID: 184461

Abstract

The incorporation of [3H]adenosine, [3H]adenine, and [3H]hypoxanthine into adenine nucleotides of nude (athymic) mouse liver and human hepatoma grown subcutaneously in nude mice was studied. 3H and 32P radioactive labeling in vivo of acid-soluble nucleotides followed by chromatographic procedures indicated that, in contrast to [3H]adenine and [3H]hypoxanthine, [3H]adenosine is preferentially incorporated into ATP in comparison with its incorporation into AMP and ADP. This phenomenon, as well as complementing the recently reported 3-fold increase in total cellular ATP upon treatmen- with 0.5-1.0 mM concentrations of adenosine, indicates the formation from adenosine of compartmentalized ATP that is not produced from either adenine or hypoxanthine. The observed effect is of larger magnitude in the growth-arrested normal liver than in the actively growing tumor.

Full text

PDF
3122

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkinson D. E., Fall L. Adenosine triphosphate conservation in biosynthetic regulation. Escherichia coli phosphoribosylpyrophosphate synthase. J Biol Chem. 1967 Jul 10;242(13):3241–3242. [PubMed] [Google Scholar]
  2. Atkinson D. E. The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry. 1968 Nov;7(11):4030–4034. doi: 10.1021/bi00851a033. [DOI] [PubMed] [Google Scholar]
  3. Brooks R. F. The kinetics of serum-induced initiation of DNA synthesis in BHK 21/C13 cells, and the influence of exogenous adenosine. J Cell Physiol. 1975 Oct;86(2 Pt 2 Suppl 1):369–377. doi: 10.1002/jcp.1040860409. [DOI] [PubMed] [Google Scholar]
  4. Bucher N. L., Swaffield M. N. Nucleotide pools and [6-14C]orotic acid incorporation in early regenerating rat liver. Biochim Biophys Acta. 1966 Dec 21;129(3):445–459. doi: 10.1016/0005-2787(66)90060-8. [DOI] [PubMed] [Google Scholar]
  5. CAPUTTO R. The enzymatic synthesis of adenylic acid; adenosinekinase. J Biol Chem. 1951 Apr;189(2):801–814. [PubMed] [Google Scholar]
  6. Chagoya de Sánchez V., Brunner A., Piña E. In vivo modification of the energy charge in the liver cell. Biochem Biophys Res Commun. 1972 Feb 16;46(3):1441–1445. doi: 10.1016/s0006-291x(72)80138-4. [DOI] [PubMed] [Google Scholar]
  7. Chan T. S., Ishii K., Long C., Green H. Purine excretion by mammalian cells deficient in adenosine kinase. J Cell Physiol. 1973 Jun;81(3):315–322. doi: 10.1002/jcp.1040810304. [DOI] [PubMed] [Google Scholar]
  8. Fox I. H., Kelley W. N. Human phosphoribosylpyrophosphate synthetase. Kinetic mechanism and end product inhibition. J Biol Chem. 1972 Apr 10;247(7):2126–2131. [PubMed] [Google Scholar]
  9. Fox I. H. Purine ribonucleotide catabolism: clinical and biochemical significance. Review. Nutr Metab. 1974;16(2):65–78. doi: 10.1159/000175474. [DOI] [PubMed] [Google Scholar]
  10. Grummt I., Grummt F. Control of nucleolar RNA synthesis by the intracellular pool sizes of ATP and GTP. Cell. 1976 Mar;7(3):447–453. doi: 10.1016/0092-8674(76)90175-6. [DOI] [PubMed] [Google Scholar]
  11. Ishii K., Green H. Lethality of adenosine for cultured mammalian cells by interference with pyrimidine biosynthesis. J Cell Sci. 1973 Sep;13(2):429–439. doi: 10.1242/jcs.13.2.429. [DOI] [PubMed] [Google Scholar]
  12. Lund P., Cornell N. W., Krebs H. A. Effect of adenosine on the adenine nucleotide content and metabolism of hepatocytes. Biochem J. 1975 Dec;152(3):593–599. doi: 10.1042/bj1520593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Murray A. W., Elliott D. C., Atkinson M. R. Nucleotide biosynthesis from preformed purines in mammalian cells: regulatory mechanisms and biological significance. Prog Nucleic Acid Res Mol Biol. 1970;10:87–119. doi: 10.1016/s0079-6603(08)60562-0. [DOI] [PubMed] [Google Scholar]
  14. Ove P., Takai S. I., Umeda T., Lieberman I. Adenosine triphosphate in liver after partial hepatectomy and acute stress. J Biol Chem. 1967 Nov 10;242(21):4963–4971. [PubMed] [Google Scholar]
  15. Plagemann P. G. Nucleotide pools in Novikoff rat hepatoma cells growing in suspension culture. 3. Effects of nucleosides in medium on levels of nucleotides in separate nucleotide pools for nuclear and cytoplasmic RNA synthesis. J Cell Biol. 1972 Jan;52(1):131–146. doi: 10.1083/jcb.52.1.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. WOLLENBERGER A., RISTAU O., SCHOFFA G. [A simple technic for extremely rapid freezing of large pieces of tissue]. Pflugers Arch Gesamte Physiol Menschen Tiere. 1960;270:399–412. [PubMed] [Google Scholar]
  17. Weber G., Stubbs M., Morris H. P. Metabolism of hepatomas of different growth rates in situ and during ischemia. Cancer Res. 1971 Dec;31(12):2177–2183. [PubMed] [Google Scholar]
  18. Wilkening J., Nowack J., Decker K. The dependence of glucose formation from lactate on the adenosine triphosphate content in the isolated perfused rat liver. Biochim Biophys Acta. 1975 Jun 12;392(2):299–309. doi: 10.1016/0304-4165(75)90011-2. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES