Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1991 May;103(1):1079–1084. doi: 10.1111/j.1476-5381.1991.tb12303.x

The role of endogenous thromboxane in contractions to U46619, oxygen, 5-HT and 5-CT in the human isolated umbilical artery.

A G Templeton 1, J C McGrath 1, M J Whittle 1
PMCID: PMC1908072  PMID: 1878747

Abstract

1. The effects of selective thromboxane antagonists and a thromboxane synthase inhibitor on the contraction to 9,11-dideoxy-11 alpha,9 alpha-epoxymethano-prostaglandin F2 alpha (U46619) and oxygen in the human umbilical artery (HUA) were examined. The effect of the antagonists on contractions to both 5-hydroxytryptamine (5-HT) and 5-carboxamidotryptamine (5-CT) were also examined. 2. U46619 (0.3 nM-10 microM) contracted the HUA. This contraction was antagonized by two selective thromboxane receptor antagonists EP092 (10 nM-1 microM) and GR32191B (10 nM-1 microM). The contraction was not affected by the selective thromboxane synthase inhibitor, dazoxiben (10 nM-1 microM). 3. When the oxygen tension was increased from 16 mmHg to 120 mmHg, the HUA transiently contracted. Both thromboxane antagonists inhibited this contraction in a concentration-dependent manner with 1 microM almost completely abolishing the response (the oxygen-induced contraction of the control preparation normally increases with a second exposure to 120 mmHg oxygen). 4. In low (16 mmHg) oxygen, responses to both 5-HT and 5-CT were unaffected by both thromboxane receptor antagonists at concentrations up to 1 microM. In high oxygen (120 mmHg) responses to both 5-HT and 5-CT were biphasic in nature, with an additional initial high sensitivity phase, which was abolished by a cyclo-oxygenase inhibitor. In high oxygen, EP092 and GR32191B blocked this initial phase in a concentration-dependent manner, returning sensitivity to 5-HT and 5-CT to that seen in low oxygen.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
1079

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARUNLAKSHANA O., SCHILD H. O. Some quantitative uses of drug antagonists. Br J Pharmacol Chemother. 1959 Mar;14(1):48–58. doi: 10.1111/j.1476-5381.1959.tb00928.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Armstrong R. A., Jones R. L., Peesapati V., Will S. G., Wilson N. H. Competitive antagonism at thromboxane receptors in human platelets. Br J Pharmacol. 1985 Mar;84(3):595–607. doi: 10.1111/j.1476-5381.1985.tb16139.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benedetto C., Barbero M., Rey L., Zonca M., Massobrio M., Rocca G., Slater T. F. Production of prostacyclin, 6-keto-PGF1 alpha and thromboxane B2 by human umbilical vessels increases from the placenta towards the fetus. Br J Obstet Gynaecol. 1987 Dec;94(12):1165–1169. doi: 10.1111/j.1471-0528.1987.tb02317.x. [DOI] [PubMed] [Google Scholar]
  4. Benigni A., Gregorini G., Frusca T., Chiabrando C., Ballerini S., Valcamonico A., Orisio S., Piccinelli A., Pinciroli V., Fanelli R. Effect of low-dose aspirin on fetal and maternal generation of thromboxane by platelets in women at risk for pregnancy-induced hypertension. N Engl J Med. 1989 Aug 10;321(6):357–362. doi: 10.1056/NEJM198908103210604. [DOI] [PubMed] [Google Scholar]
  5. Bjøro K., Hovig T., Stokke K. T., Stray-Pedersen S. Formation of prostanoids in human umbilical vessels perfused in vitro. Prostaglandins. 1986 Apr;31(4):683–698. doi: 10.1016/0090-6980(86)90174-7. [DOI] [PubMed] [Google Scholar]
  6. Bjøro K. Prostacyclin and thromboxane formation in human umbilical arteries following stimulation with vasoactive autacoids. Prostaglandins. 1986 Apr;31(4):699–714. doi: 10.1016/0090-6980(86)90175-9. [DOI] [PubMed] [Google Scholar]
  7. Bor I., Guntheroth W. G. In vitro response to oxygen of human umbilical arteries and of animal ductus arteriosus. Can J Physiol Pharmacol. 1970 Jul;48(7):500–502. doi: 10.1139/y70-077. [DOI] [PubMed] [Google Scholar]
  8. Engel G., Göthert M., Müller-Schweinitzer E., Schlicker E., Sistonen L., Stadler P. A. Evidence for common pharmacological properties of [3H]5-hydroxytryptamine binding sites, presynaptic 5-hydroxytryptamine autoreceptors in CNS and inhibitory presynaptic 5-hydroxytryptamine receptors on sympathetic nerves. Naunyn Schmiedebergs Arch Pharmacol. 1983 Sep;324(2):116–124. doi: 10.1007/BF00497016. [DOI] [PubMed] [Google Scholar]
  9. Jones R. L., Peesapati V., Wilson N. H. Antagonism of the thromboxane-sensitive contractile systems of the rabbit aorta, dog saphenous vein and guinea-pig trachea. Br J Pharmacol. 1982 Jul;76(3):423–438. doi: 10.1111/j.1476-5381.1982.tb09236.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jones R. L., Wilson N. H., Lawrence R. A. EP 171: a high affinity thromboxane A2-mimetic, the actions of which are slowly reversed by receptor blockade. Br J Pharmacol. 1989 Apr;96(4):875–887. doi: 10.1111/j.1476-5381.1989.tb11898.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lewis B. V. The response of isolated sheep and human umbilical arteries to oxygen and drugs. J Obstet Gynaecol Br Commonw. 1968 Jan;75(1):87–91. doi: 10.1111/j.1471-0528.1968.tb00126.x. [DOI] [PubMed] [Google Scholar]
  12. MacLennan S. J., McGrath J. C., Whittle M. J. Inhibition of the oxygen-induced contraction of the isolated human umbilical artery by indomethacin, flurbiprofen, aspirin and drugs modifying Ca2+ disposition. Prostaglandins. 1988 Nov;36(5):711–729. doi: 10.1016/0090-6980(88)90015-9. [DOI] [PubMed] [Google Scholar]
  13. MacLennan S. J., Whittle M. J., McGrath J. C. 5-HT1-like receptors requiring functional cyclo-oxygenase and 5-HT2 receptors independent of cyclo-oxygenase mediate contraction of the human umbilical artery. Br J Pharmacol. 1989 Jul;97(3):921–933. doi: 10.1111/j.1476-5381.1989.tb12033.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. McGrath J. C., MacLennan S. J., Mann A. C., Stuart-Smith K., Whittle M. J. Contraction of human umbilical artery, but not vein, by oxygen. J Physiol. 1986 Nov;380:513–519. doi: 10.1113/jphysiol.1986.sp016299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Neri Serneri G. G., Abbate R., Gensini G. F., Panetta A., Casolo G. C., Carini M. TxA2 production by human arteries and veins. Prostaglandins. 1983 Jun;25(6):753–766. doi: 10.1016/0090-6980(83)90001-1. [DOI] [PubMed] [Google Scholar]
  16. Oberhänsli-Weiss I., Heymann M. A., Rudolph A. M., Melmon K. L. The pattern and mechanisms of response to oxygen by the ductus arteriosus and umbilical artery. Pediatr Res. 1972 Sep;6(9):693–700. doi: 10.1203/00006450-197209000-00001. [DOI] [PubMed] [Google Scholar]
  17. Pritchard J. A., Cunningham F. G., Mason R. A. Coagulation changes in eclampsia: their frequency and pathogenesis. Am J Obstet Gynecol. 1976 Apr 15;124(8):855–864. doi: 10.1016/s0002-9378(16)33390-7. [DOI] [PubMed] [Google Scholar]
  18. Schiff E., Peleg E., Goldenberg M., Rosenthal T., Ruppin E., Tamarkin M., Barkai G., Ben-Baruch G., Yahal I., Blankstein J. The use of aspirin to prevent pregnancy-induced hypertension and lower the ratio of thromboxane A2 to prostacyclin in relatively high risk pregnancies. N Engl J Med. 1989 Aug 10;321(6):351–356. doi: 10.1056/NEJM198908103210603. [DOI] [PubMed] [Google Scholar]
  19. Svenssen J., Strandberg K., Tuvemo T., Hamberg M. Thromboxane A2: effects on airway and vascular smooth muscle. Prostaglandins. 1977 Sep;14(3):425–436. doi: 10.1016/0090-6980(77)90258-1. [DOI] [PubMed] [Google Scholar]
  20. Tuvemo T., Strandberg K., Hamberg M., Samuelsson B. Formation and action of prostaglandin endoperoxides in the isolated human umbilical artery. Acta Physiol Scand. 1976 Feb;96(2):145–149. doi: 10.1111/j.1748-1716.1976.tb10183.x. [DOI] [PubMed] [Google Scholar]
  21. Walsh S. W. Preeclampsia: an imbalance in placental prostacyclin and thromboxane production. Am J Obstet Gynecol. 1985 Jun 1;152(3):335–340. doi: 10.1016/s0002-9378(85)80223-4. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES