Abstract
A cytochrome c haem ligand, methionine-80, was photo-oxidized to methionine sulphoxide and the subsequent changes in redox properties and ligand binding were monitored kinetically. Isoelectric focusing of the product showed the presence of a single oxidized species, capable of binding CO when reduced. The binding of CO to the reduced protein was followed in stopped-flow experiments, which revealed the presence of two binding processes, at neutral pH, with rate constants of K+1 = 3.4 X 10(3)M-1-S-1 and k+2 = 5.80 X 10(2)M-1-S-1. When CO was photolytically dissociated from the reduced protein two recombination processes were observed with rates almost identical with those observed in the stopped-flow experiments (k+1 = 3.3 X 10(3)M-1-S-1 and k+2 = 6.0 X 10(2)M-1-S-1). These findings provide evidence of two reduced forms of the protein. The reduction of [methionine sulphoxide]cytochrome c by Cr2+ at neutral pH in stopped-flow experiments showed the presence of a single second-order reduction process (k = 7.2 X 10(3)M-1-S-1, activation energy = 44kJ/mol) and one first-order process. This protein was compared with some other chemically modified cytochromes.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brittain T., Greenwood C. Kinetic studies on (N-formyltryptophyl)cytochrome c. Biochem J. 1975 Sep;149(3):713–717. doi: 10.1042/bj1490713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brittain T., Wilson M. T., Greenwood C. The reduction of carboxymethyl-cytochrome c by chromous ions. Biochem J. 1974 Aug;141(2):455–461. doi: 10.1042/bj1410455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brunori M., Wilson M. T., Antonini E. Properties of modified cytochromes. I. Equilibrium and kinetics of the pH-dependent transition in carboxymethylated horse heart cytochrome c. J Biol Chem. 1972 Oct 10;247(19):6076–6081. [PubMed] [Google Scholar]
- Dawson J. W., Gray H. B., Holwerda R. A., Westhead E. W. Kinetics of the reduction of metalloproteins by chromous ion (laccase-cytochrome c-plastocyanins-temperature-rate constants). Proc Natl Acad Sci U S A. 1972 Jan;69(1):30–33. doi: 10.1073/pnas.69.1.30. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DeVault D., Chance B. Studies of photosynthesis using a pulsed laser. I. Temperature dependence of cytochrome oxidation rate in chromatium. Evidence for tunneling. Biophys J. 1966 Nov;6(6):825–847. doi: 10.1016/s0006-3495(66)86698-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Folin M., Azzi A., Tamburro A. M., Jori G. Photo-oxidative modification of the heme ligands in horse heart ferricytochrome c: conformational and functional studies. Biochim Biophys Acta. 1972 Dec 28;285(2):337–345. doi: 10.1016/0005-2795(72)90318-2. [DOI] [PubMed] [Google Scholar]
- GEORGE P., SCHEJTER A. THE REACTIVITY OF FERROCYTOCHROME C WITH IRON-BINDING LIGANDS. J Biol Chem. 1964 May;239:1504–1508. [PubMed] [Google Scholar]
- Gibson Q. H., Milnes L. Apparatus for rapid and sensitive spectrophotometry. Biochem J. 1964 Apr;91(1):161–171. doi: 10.1042/bj0910161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greenwood C., Gibson Q. H. The reaction of reduced cytochrome C oxidase with oxygen. J Biol Chem. 1967 Apr 25;242(8):1782–1787. [PubMed] [Google Scholar]
- Greenwood C., Palmer G. Evidence for the existence of two functionally distinct forms cytochrome c manomer at alkaline pH. J Biol Chem. 1965 Sep;240(9):3660–3663. [PubMed] [Google Scholar]
- Ivanetich K. M., Bradshaw J. J., Kaminsky L. S. Methionine sulfoxide cytochrome c. Biochemistry. 1976 Mar 9;15(5):1144–1153. doi: 10.1021/bi00650a029. [DOI] [PubMed] [Google Scholar]
- Jori G., Gennari G., Galiazzo G., Scoffone E. Photo-oxidation of horse heart cytochrome c. Evidence for methionine-80 as a heme ligand. FEBS Lett. 1970 Feb 16;6(3):267–269. doi: 10.1016/0014-5793(70)80074-6. [DOI] [PubMed] [Google Scholar]
- MARGOLIASH E., FROHWIRT N. Spectrum of horse-heart cytochrome c. Biochem J. 1959 Mar;71(3):570–572. doi: 10.1042/bj0710570. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Margoliash E., Ferguson-Miller S., Tulloss J., Kang C. H., Feinberg B. A., Brautigan D. L., Morrison M. Separate intramolecular pathways for reduction and oxidation of cytochrome c in electron transport chain reactions. Proc Natl Acad Sci U S A. 1973 Nov;70(11):3245–3249. doi: 10.1073/pnas.70.11.3245. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SCHEJTER A., GEORGE P. THE 695-MMM. BAND OF FERRICYTOCHROME C AND ITS RELATIONSHIP TO PROTEIN CONFORMATION. Biochemistry. 1964 Aug;3:1045–1049. doi: 10.1021/bi00896a006. [DOI] [PubMed] [Google Scholar]
- Sreenathan B. R., Taylor C. P. The insensitivity of the 695 nm band of horse heart ferricytochrome c to protein conformation. Biochem Biophys Res Commun. 1971 Mar 19;42(6):1122–1126. doi: 10.1016/0006-291x(71)90021-0. [DOI] [PubMed] [Google Scholar]
- Stellwagen E. Carboxymethylation of horse heart ferricytochrome c and cyanferricytochrome c. Biochemistry. 1968 Jul;7(7):2496–2501. doi: 10.1021/bi00847a008. [DOI] [PubMed] [Google Scholar]
- Sutin N., Yandell J. K. Mechanisms of the reactions of cytochrome c. Rate and equilibrium constants for ligand binding to horse heart ferricytochrome c. J Biol Chem. 1972 Nov 10;247(21):6932–6936. [PubMed] [Google Scholar]
- Takano T., Kallai O. B., Swanson R., Dickerson R. E. The structure of ferrocytochrome c at 2.45 A resolution. J Biol Chem. 1973 Aug 10;248(15):5234–5255. [PubMed] [Google Scholar]
- Wilson M. T., Brunori M., Rotilio G. C., Antonini E. Properties of modified cytochromes. II. Ligand binding to reduced carboxymethyl cytochrome c. J Biol Chem. 1973 Dec 10;248(23):8162–8169. [PubMed] [Google Scholar]
- Winfield M. E. Electron transfer within and between haemoprotein molecules. J Mol Biol. 1965 Jul;12(3):600–611. doi: 10.1016/s0022-2836(65)80314-x. [DOI] [PubMed] [Google Scholar]