Skip to main content
Cytotechnology logoLink to Cytotechnology
. 1998 Sep;27(1-3):225–235. doi: 10.1023/A:1008025124242

New insights into the kinetic resistance to anticancer agents

Bruno Chauffert, Marie-Thérèse Dimanche-Boitrel, Carmen Garrido, Mikael Ivarsson, Monique Martin, François Martin, Eric Solary
PMCID: PMC3449571  PMID: 19002794

Abstract

Kinetic resistance plays a major role in the failure of chemotherapy towards many solid tumors. Kinetic resistance to cytotoxic drugs can be reproduced in vitro by growing the cells as multicellular spheroids (Multicellular Resistance) or as hyperconfluent cultures (Confluence-Dependent Resistance). Recent findings on the cell cycle regulation have permitted a better understanding why cancer cells which arrest in long quiescent phases are poorly sensitive to cell-cycle specific anticancer drugs. Two cyclin-dependent kinase inhibitors (CDKI) seem particularly involved in the cell cycle arrest at the G1 to S transition checkpoint: the p53-dependent p21cip1 protein which is activated by DNA damage and the p27kip1 which is a mediator of the contact inhibition signal. Cell quiescence could alter drug-induced apoptosis which is partly dependent on an active progression in the cell cycle and which is facilitated by overexpression of oncogenes such as c-Myc or cyclins. Investigations are yet necessary to determine the influence of the cell cycle on the balance between antagonizing (bcl-2, bcl-XL...) or stimulating (Bax, Bcl-XS, Fas...) factors in chemotherapy-induced apoptosis. Quiescent cells could also be protected from toxic agents by an enhanced expression of stress proteins, such as HSP27 which is induced by confluence. New strategies are required to circumvent kinetic resistance of solid tumors: adequate choice of anticancer agents whose activity is not altered by quiescence (radiation, cisplatin), recruitment from G1 to S/G2 phases by cell pretreatment with alkylating drugs or attenuation of CDKI activity by specific inhibitors.

Keywords: anticancer drugs, apoptosis, cell cycle, drug resistance

Full Text

The Full Text of this article is available as a PDF (104.5 KB).

References

  • 1.Goldie JH, Coldman AJ. A mathematical model for relating the drug sensitivity of tumors to their spontaneous mutation rate. Cancer Treat Rep. 1979;63:1727–33. [PubMed] [Google Scholar]
  • 2.Riordan JR, Ling V. Genetic and biochemical characterization of multidrug resistance. Pharmacol Ther. 1985;28:51–75. doi: 10.1016/0163-7258(85)90082-8. [DOI] [PubMed] [Google Scholar]
  • 3.Woodhouse JR, Ferry D. The genetic basis of resistance to cancer chemotherapy. Ann Med. 1995;27:157–167. doi: 10.3109/07853899509031953. [DOI] [PubMed] [Google Scholar]
  • 4.De Vita V. The relationship between tumor mass and resistance to chemotherapy. Cancer. 1983;51:1209–20. doi: 10.1002/1097-0142(19830401)51:7<1209::AID-CNCR2820510707>3.0.CO;2-J. [DOI] [PubMed] [Google Scholar]
  • 5.Vukovic V, Tannock IF. Influence of low pH on cytotoxicity of placlitaxel, mitoxantrone and topotecan. Br J Cancer. 1997;75:1167–1172. doi: 10.1038/bjc.1997.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Valeriote F, Van Putten L. Proliferation-dependent cytotoxicity of anticancer agents: a review. Cancer Res. 1975;3:2619–30. [PubMed] [Google Scholar]
  • 7.Dimanche-Boitrel MT, Garrido C, Chauffert B. Kinetic resistance to anticancer agents. Cytotechnology. 1993;12:347–356. doi: 10.1007/BF00744672. [DOI] [PubMed] [Google Scholar]
  • 8.Liu LF. DNA topoisomerase poisons as anticancer drugs. Ann Rev Biochem. 1989;58:351–375. doi: 10.1146/annurev.bi.58.070189.002031. [DOI] [PubMed] [Google Scholar]
  • 9.Solary E, Bertrand R, Pommier Y. Apoptosis induced by DNA topoisomerase I and II inhibitors in human leukemic HL-60 cells. Leukemia and Lymphoma. 1994;15:21–32. doi: 10.3109/10428199409051674. [DOI] [PubMed] [Google Scholar]
  • 10.Donaldson KL, Goolsby GL, Wahl AF. Cytotoxicity of the anticancer agents cisplatin and taxol during cell proliferation and the cell cycle. Int J Cancer. 1994;57:847–855. doi: 10.1002/ijc.2910570614. [DOI] [PubMed] [Google Scholar]
  • 11.Tannock IF. Cell kinetics and chemotherapy: a critical review. Cancer Treat Rep. 1978;62:1117–1133. [PubMed] [Google Scholar]
  • 12.Tannock IF. Principles of cell proliferation: cell kinetics. In: Kirkwood JM, Lotze MT, Yasko JM, editors. Current Cancer Therapeutics. Princeton, New Jersey: Princeton Academic Press; 1994. pp. 3–13. [Google Scholar]
  • 13.Hartwell LH, Kastan MB. Cell cycle control and cancer. Science. 1994;266:1821–1828. doi: 10.1126/science.7997877. [DOI] [PubMed] [Google Scholar]
  • 14.Morgan DO. Principles of CDK regulation. Nature. 1995;374:131–134. doi: 10.1038/374131a0. [DOI] [PubMed] [Google Scholar]
  • 15.Sherr CJ, Roberts JM. Inhibitors of mammalians G1 cyclin-dependent kinases. Genes Dev. 1995;9:1149–1163. doi: 10.1101/gad.9.10.1149. [DOI] [PubMed] [Google Scholar]
  • 16.Weinberg RA. E2F and cell proliferation: a world turned upside down. Cell. 1996;85:457–459. doi: 10.1016/S0092-8674(00)81244-1. [DOI] [PubMed] [Google Scholar]
  • 17.Kuzminov A. Collapse and repair of replication forks in Escherichia coli. Mol Microbiol. 1995;16:373–384. doi: 10.1111/j.1365-2958.1995.tb02403.x. [DOI] [PubMed] [Google Scholar]
  • 18.Goldwasser F, Shimizu T, Jackman J, Hoki Y, O'Connor PM. Correlations between S and G2 arrest and the cytotoxicity of camptothecin in human colon cancer cells. Cancer Res. 1996;56:4430–4437. [PubMed] [Google Scholar]
  • 19.D'Arpa P, Beardmore C and Liu LF (1990) Involvement of nucleic acid synthesis in cell killing mechanisms of topoisomerase poisons. Cancer Res 50: 6919-6924. [PubMed]
  • 20.Paulovich AG, Toczyski DP, Hartwell LH. When checkpoints fail. Cell. 1997;88:315–321. doi: 10.1016/S0092-8674(00)81870-X. [DOI] [PubMed] [Google Scholar]
  • 21.Levine AJ. p53, the cellular gatekeeper for growth and division. Cell. 1997;88:323–331. doi: 10.1016/S0092-8674(00)81871-1. [DOI] [PubMed] [Google Scholar]
  • 22.Hollstein M, Rice K, Greenblatt MS, Soussi T, Fuchs R, Sorlie T, Hovig E, Smith-Sorensen B, Montesano R, Harris CC. Database of p53 gene somatic mutations in human tumors and cell lines. Nucleic Acid Res. 1994;22:3551–3555. [PMC free article] [PubMed] [Google Scholar]
  • 23.Mc Gowan CH, Russel P. Human Wee1 kinase inhibits cell division by phosphorylating p34cdc2 exclusively on tyr15. EMBO J. 1993;12:75–85. doi: 10.1002/j.1460-2075.1993.tb05633.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Konopa J. G2 Block induced by DNA crosslinking agents and its possible consequences. Biochem Pharmacol. 1988;37:2303–2309. doi: 10.1016/0006-2952(88)90355-3. [DOI] [PubMed] [Google Scholar]
  • 25.Russell KJ, Wiens LW, Demers GW, Galloway DA, Plon SE, Groudine M. Abrogation of the G2 checkpoint results in different radiosensitization of G1-checkpointdeficient and G1-checkpoint competent cells. Cancer Res. 1995;55:1639–1642. [PubMed] [Google Scholar]
  • 26.Dubrez L, Goldwasser F, Genne P, Pommier Y, Solary E. The role of cell cycle regulation and apoptosis triggering in determining the sensitivity of leukemic cells to topoisomerase I and II inhibitors. Leukemia. 1995;9:1013–1024. [PubMed] [Google Scholar]
  • 27.Graeber AJ, Osmanian C, Jack T, Housman DE, Koch CJ, Lowe S., Graccia AJ. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumors. Nature. 1996;379:88–91. doi: 10.1038/379088a0. [DOI] [PubMed] [Google Scholar]
  • 28.Ucker DS. Death by suicide: one way to go in mammalian cell development. New Biologist. 1991;3:103–109. [PubMed] [Google Scholar]
  • 29.Lazebnik YA, Takahashi A, Moir RD, Goldman RD, Poirier GG, Kaufmann SH, Earnshaw WC. Studies of the lamin proteinase reveal multiple parallel biochemical pathway during apoptotic execution. Proc Natl Acad Sci USA. 1995;92:9042–9046. doi: 10.1073/pnas.92.20.9042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Evans DL, Tilby M, Dice C. Differential sensitivity to the induction of apoptosis by cisplatin in proliferating and quiescent immature rat thymocytes is independent of the level of drug accumulation and DNA adduct formation. Cancer Res. 1994;54:1596–1603. [PubMed] [Google Scholar]
  • 31.Chen G, Shi L, Lichtfield DW, Greenberg AH. Rescue from granzyme B-induced apoptosis by Wee1 kinase. J Exp Med. 1995;181:2295–2300. doi: 10.1084/jem.181.6.2295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Lahti JM(1995) PILSTRE protein kinase activity is associated with apoptosis. Mol Cell Biol 15: 1-11. [DOI] [PMC free article] [PubMed]
  • 33.Shimizu T, O'Connor PM. Unscheduled activation of cyclinB1/Cdc2 kinase in human promyelocytic leukemia cell line HL60 cells undergoing apoptosis induced by DNA damage. Cancer Res. 1995;55:228–231. [PubMed] [Google Scholar]
  • 34.Meikrantz W, Gisselbrecht S, Tam S, Schlegel R. Activation of cyclin A-dependent protein kinases during apoptosis. Proc Natl Acad Sci USA. 1994;91:3754–3758. doi: 10.1073/pnas.91.9.3754. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Yonish Rouach E. P53-mediated cell death: relationship to cell cycle control. Mol Cell Biol. 1993;13:1415–1423. doi: 10.1128/mcb.13.3.1415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.White E, Cipriani R, Sabbatini P, Denton A. Adenovirus E1B 19-kDa protein overcomes the cytotoxicity of E1A proteins. J Virol. 1991;65:2968–2978. doi: 10.1128/jvi.65.6.2968-2978.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Fanidi A, Harrington E, Evan G. Cooperative interaction between c-myc and bcl-2 proto-oncogenes. Nature. 1992;359:554–556. doi: 10.1038/359554a0. [DOI] [PubMed] [Google Scholar]
  • 38.Evan GI. Apoptosis and the cell cycle. Curr Opin Cell Biol. 1995;7:825–834. doi: 10.1016/0955-0674(95)80066-2. [DOI] [PubMed] [Google Scholar]
  • 39.Israel MA (1997) Optimizing cytotoxic responses in the absence of significant apoptosis. ASCO Education Book Spring 3-6.
  • 40.Olive PL, Durand RE. Drug and radiation resistance in spheroids: cell contact and kinetics. Cancer Metastasis Rev. 1994;13:121–138. doi: 10.1007/BF00689632. [DOI] [PubMed] [Google Scholar]
  • 41.Kobayashi H, Man S, Kapitain SJ, Teicher BA, Kerbel RS. Acquired multicellular resistance to alkylating agents in cancer. Proc Natl Acad Sci USA. 1993;90:3294–3298. doi: 10.1073/pnas.90.8.3294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Dimanche-Boitrel M-T, Pelletier H, Genne P, Petit JM, Le Grimellec C, Canal P, Ardiet C, Bastian G, Chauffert B. Confluence-dependent resistance in human colon cancer cells: Role of reduced drug accumulation and low intrinsic chemosensitivity of resting cells. Int J Cancer. 1992;50:677–682. doi: 10.1002/ijc.2910500502. [DOI] [PubMed] [Google Scholar]
  • 43.Kerbel RS. Impact of multicellular resistance on the survival of solid tumors, including micrometastases. Invasion Metastasis. 1994;14:50–60. [PubMed] [Google Scholar]
  • 44.St Croix BS, Kapitain S, Sheehan C, Graham CH, Kerbel RS. Reversal by hyaluronidase of adhesion-dependent multicellular drug resistance in mammary carcinoma cells. J Natl Cancer Inst. 1996;88:1285–1296. doi: 10.1093/jnci/88.18.1285. [DOI] [PubMed] [Google Scholar]
  • 45.Nakayama K. Mice lacking p27(Kip1) display increased body size, multiple organ hyperplasia, retinal dysplasia and pituitary tumors. Cell. 1996;85:707–720. doi: 10.1016/S0092-8674(00)81237-4. [DOI] [PubMed] [Google Scholar]
  • 46.Pagano M, Tam SW, Theodoras AM, Beer-Romero P, Del Sal G, Chau V, Yew PR, Draetta GF, Rolfe M. Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science. 1995;269:682–685. doi: 10.1126/science.7624798. [DOI] [PubMed] [Google Scholar]
  • 47.Porter P, Malone KE, Haegerty PJ, Alexander GM, Gatti LA, Firpo EJ, Daling JR, Roberts JM. Expression of cell-cycle regulator p27Kip1 and cyclin E, alone and in combination, correlate with survival in young breast cancer patients. Nature Med. 1997;3:222–225. doi: 10.1038/nm0297-222. [DOI] [PubMed] [Google Scholar]
  • 48.St Croix BS, Florenes VA, Rak JW, Flanangan M, Bhattacharya N, Slingerland JM, Kerbel RS. Impact of the cyclin-dependent kinase inhibitor p27Kip1 on resistance of tumor cells to anticancer agents. Nature Med. 1996;2:1204–1210. doi: 10.1038/nm1196-1204. [DOI] [PubMed] [Google Scholar]
  • 49.Bates RC, Buret A, van Helden DF, Horton MA, Burns GF. Apoptosis induced by inhibition of intercellular contact. J Cell Biol. 1994;125:403–415. doi: 10.1083/jcb.125.2.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Boudreau N, Sympson CJ, Werb Z, Bissel MJ. Suppression of ICE and apoptosis in mammary cells by extracellular matrix. Science. 1995;267:891–893. doi: 10.1126/science.7531366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Day ML, Foster RG, Day KC, Zhao X, Humphrey P, Swanson P, Postigo AA, Zhang SH, Dean DC. Cell anchorage regulates apoptosis through the retinoblastoma tumor suppressor/E2F pathway. J Biol Chem. 1997;272:8125–8128. doi: 10.1074/jbc.272.13.8125. [DOI] [PubMed] [Google Scholar]
  • 52.Koyama H, Raines EW, Bornfeldt KE, Roberts JM, Ross R. Fibrillar collagen inhibits arterial smooth muscle proliferation through regulation of cdk2 inhibitors. Cell. 1996;87:1069–1078. doi: 10.1016/S0092-8674(00)81801-2. [DOI] [PubMed] [Google Scholar]
  • 53.Meredith JE, Schwartz MA. Integrins, adhesion and apoptosis. Trends Cell Biol. 1997;7:146–150. doi: 10.1016/S0962-8924(97)01002-7. [DOI] [PubMed] [Google Scholar]
  • 54.Meredith JE, Fazeli B, Schwartz MA. The extracellular matrix as a cell survival factor. Mol Biol Cell. 1993;4:953–961. doi: 10.1091/mbc.4.9.953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Rak J, Mitsuhashi Y, Erdos V, Huang S., Filmus J, Kerbel RS. Massive programmed cell death in intestinal epithelial cells induced by three-dimensional growth conditions: suppression by mutant c-H-ras oncogene expression. J Cell Biol. 1995;131:1587–1598. doi: 10.1083/jcb.131.6.1587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Kroemer G. The protooncogene bcl-2 and its role in regulating apoptosis. Nature Med. 1997;3:614–620. doi: 10.1038/nm0697-614. [DOI] [PubMed] [Google Scholar]
  • 57.Dole MG, Jasty R, Cooper MJ, Thompson CB, Nunez G, Castle VP. Bcl-xL is expressed in neuroblastoma cells and modulates chemotherapy-induced apoptosis. Cancer Res. 1995;55:2576–2582. [PubMed] [Google Scholar]
  • 58.Strobel T, Swanson L, Korsmeyer S, Cannistra SA. BAX enhances paclitaxel-induced apoptosis through a p53-independent pathway. Proc natl Acad Sci USA. 1996;93:14094–14099. doi: 10.1073/pnas.93.24.14094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Jacobson MD, Burne JF, Raff MC. Programmed cell death and Bcl-2 protection in the absence of a nucleus. EMBO J. 1994;13:1899–1910. doi: 10.1002/j.1460-2075.1994.tb06459.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Micheau O, Solary E, Hammann, Martin F, Dimanche-Boitrel MT. Sensitization of cancer cells treated with cytotoxic drugs to Fas-mediated cytotoxicity. J Natl Cancer Inst. 1997;89:783–789. doi: 10.1093/jnci/89.11.783. [DOI] [PubMed] [Google Scholar]
  • 61.Newmeyer DD, Farschon DM, Reed JC. Cell-free apoptosis in Xenopus egg extracts: inhibition by Bcl-2 and requirement for an organelle fraction enriched in mitochondria. Cell. 1994;79:353–364. doi: 10.1016/0092-8674(94)90203-8. [DOI] [PubMed] [Google Scholar]
  • 62.Campos L, Rouault JP, Sabido O, Oriol P, Roubi N, Vasselon C, Archimbaud E, Magaud JP, Guyotat D. High expression of Bcl-2 protein in acute myeloblastic leukemia cells is associated with poor response to chemotherapy. Blood. 1993;81:3091–3096. [PubMed] [Google Scholar]
  • 63.Krajewski S, Blomqvist C, Franssila K, Krajewska M, Wasenius VM, Niskanen E, Norling S, Reed JC. Reduced expression of proapoptotic gene BAX is associated with poor response rates to combination chemotherapy and shorter survival in women with metastatic breast adenocarcinoma. Cancer Res. 1995;55:4471–4478. [PubMed] [Google Scholar]
  • 64.Simonian PL, Grillot DAM, Merino R, Nunez G. Bax can antagonize Bcl-XL during etoposide and cisplatin-induced cell death independently of its heterodimerization with Bcl-XL. J Biol Chem. 1996;271:22764–22772. doi: 10.1074/jbc.271.37.22764. [DOI] [PubMed] [Google Scholar]
  • 65.Yin DX, Schimke RT. BCL-2 expression delays drug-induced apoptosis but does not increase clonogenic survival after drug treatment in HeLa cells. Cancer Res. 1995;55:4922–4928. [PubMed] [Google Scholar]
  • 66.Li GC, Hahn GM. Ethanol-induced tolerance to heat and to adriamycin. Nature. 1978;274:699–701. doi: 10.1038/274699a0. [DOI] [PubMed] [Google Scholar]
  • 67.Wallner K, Li GC. Adriamycin resistance and radiation response in Chinese hamster fibroblasts. Int J Radiat Oncol Biol Phys. 1986;12:829–833. doi: 10.1016/0360-3016(86)90043-x. [DOI] [PubMed] [Google Scholar]
  • 68.Ciocca DR, Fuqua SA, Lock-Lim S, Toft DO, Welch WJ, McGuire WL. Response of human breast cancer cells to heat shock and chemotherapeutic drugs. Cancer Res. 1992;52:3648–3654. [PubMed] [Google Scholar]
  • 69.Oesterreich S, Weng CN, Qiu M, Hilsenbeck SG, Osborne CK, Fuqua SAW. The small heat shock protein hsp27 is correlated with growth and drug resistance in human breast cancer cell lines. Cancer Res. 1993;53:4443–4448. [PubMed] [Google Scholar]
  • 70.Samali A, Cotter TG. Heat shock proteins increase resistance to apoptosis. Exp Cell Res. 1996;223:163–170. doi: 10.1006/excr.1996.0070. [DOI] [PubMed] [Google Scholar]
  • 71.Garrido C, Mehlen P, Fromentin A, Hammann A, Assem M, Arrigo AP, Chauffert B. Inconstant association between 27-kDa heat shock protein (HSP27)content and doxorubicin resistance in human colon cancer cells. Eur J Biochem. 1996;237:653–659. doi: 10.1111/j.1432-1033.1996.0653p.x. [DOI] [PubMed] [Google Scholar]
  • 72.Richards EH, Hickey E, Weber L, Master JR. Effect of overexpression of the small heat shock protein HSP27 on the heat and drug sensitivities of human testis tumor cells. Cancer Res. 1996;56:2446–2451. [PubMed] [Google Scholar]
  • 73.Huot J, Gaetan R, Lambert H, Chretien P, Landry J. Increased survival after treatments with anticancer agents of Chinese hamster cells expressing the human Mr 27,000 heat shock protein. Cancer Res. 1991;51:5245–5252. [PubMed] [Google Scholar]
  • 74.Garrido C, Ottavi P, Fromentin A, Hammann A, Arrigo AP, Chauffert B, Mehlen P. HSP27 as a mediator of confluence-dependent resistance to cell death induced by anticancer drugs. Cancer Res. 1997;57:2661–2667. [PubMed] [Google Scholar]
  • 75.Pelletier H, Millot JM, Chauffert B, Manfait M, Genne P, Martin F. Mechanisms of resistance of confluent human and rat colon cancer cells to anthracyclines: alteration of drug passive diffusion. Cancer Res. 1990;50:6626–6631. [PubMed] [Google Scholar]
  • 76.Frankel A, Buckman R, Kerbel RS. Abrogation of taxol-induced G2-M arrest and apoptosis in human ovarian cancer cells grown as multicellular tumor spheroids. Cancer Res. 1997;57:2388–2393. [PubMed] [Google Scholar]
  • 77.Darzynkiewicz Z. Apoptosis in antitumor strategies: modulation of cell cycle or differentiation. J Cell Biochem. 1995;58:151–159. doi: 10.1002/jcb.240580204. [DOI] [PubMed] [Google Scholar]
  • 78.Garrido C, Chauffert B, Pinard D, Tibaut F, Genne P, Assem M, Dimanche-Boitrel MT. Circumvention of confluence-dependent resistance in a human multidrug resistant colon cancer cell line. Int J Cancer. 1995;61:873–879. doi: 10.1002/ijc.2910610621. [DOI] [PubMed] [Google Scholar]
  • 79.Toffoli G, Corona G, Gigante M, Boiocchi M. Inhibition of Pgp activity and cell cycle-dependent chemosensitivity to doxorubicin in the multidrug-resistant LoVo colon cancer cell line. Eur J Cancer. 1996;32:1591–1597. doi: 10.1016/0959-8049(96)00113-X. [DOI] [PubMed] [Google Scholar]
  • 80.Wang Q, Fan S, Eastman A, Worland PJ, Sausville EA, O'Connor PM. UCN-01: a potent abrogator of G2 checkpoint function in cancer cells with disrupted p53. J Natl Cancer Inst. 1996;88:956–965. doi: 10.1093/jnci/88.14.956. [DOI] [PubMed] [Google Scholar]
  • 81.Powell SN, DeFrank JS, Conell P, Eogan M, Preffer F, Dombkowski D, Tang W, Friend S. and p53(+) cells to caffeine-induced radiosensitization and override of G2. delay. Cancer Res. 1995;55:1643–1648. [PubMed] [Google Scholar]
  • 82.Shinomiya N, Takemura T, Iwamoto K, Rokuntanda M. Caffeine induces S-phase apoptosis in cisdiamminedichloroplatinum-treated cells, whereas cisdiamminedichloroplatinum induces a block in G2/M. Cytometry. 1997;27:365–373. doi: 10.1002/(SICI)1097-0320(19970401)27:4<365::AID-CYTO8>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
  • 83.Fan S, Smith ML, Rivet DJ, Duba D, Zhan Q, Kohn KW, Fornace AJ, O'Connor PM. Disruption of p53 function sensitizes breast cancer MCF-7 cells to cisplatin and pentoxyfilline. Cancer Res. 1995;55:1649–1654. [PubMed] [Google Scholar]
  • 84.Zhang W, Kornblau SM, Kobayashi T, Gambel A, Claxton D, Deisseroth AB. High levels of constitutive WAF1/Cip1 protein are associated with chemoresistance in acute myelogenous leukemia. Clin Cancer Res. 1995;1:1051–1057. [PubMed] [Google Scholar]
  • 85.Vikhanskaya F, D'Incalci M. Decreased cytotoxic effects of doxorubicin in a human ovarian cancer-cell line expressing wild-type p53 and WAF1/CIP1 genes. Int J Cancer. 1995;61:397–401. doi: 10.1002/ijc.2910610320. [DOI] [PubMed] [Google Scholar]
  • 86.Poluha W, Poluha DK, Chang B, Crosbie NE, Schonhoff CM, Kilpatrick DL, Ross AH. The cyclin-dependent kinase inhibitor p21WAF1 is required for survival of differentiating neuroblastoma cells. Mol Cell Biol. 1996;16:1335–1341. doi: 10.1128/mcb.16.4.1335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Waldman T, Lengauer C, Kinzler K., Vogelstein B. Uncoupling of S phase and mitosis induced by anticancer agents in cells lacking p21. Nature. 1996;381:713–716. doi: 10.1038/381713a0. [DOI] [PubMed] [Google Scholar]
  • 88.Wang J, Walsh K. Resistance to apoptosis conferred by Cdk inhibitors during myocyte differentiation. Science. 1996;273:359–361. doi: 10.1126/science.273.5273.359. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Cytotechnology are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES