Abstract
The occurrence of the multidrug resistance phenotype still represents a limiting factor for successful cancer chemotherapy. Numerous efforts have been made to develop strategies for reversal and/or modulation of this major therapy obstacle through targeting at different levels of intervention. The phenomenon of MDR is often associated with overexpression of resistance-associated genes. Since the classical type of MDR in human cancers is mainly mediated by the P-glycoprotein encoded by the multidrug resistance gene 1, mdr1, the majority of reversal approaches target the expression and/or function of the mdr1 gene/P-glycoprotein. Due to the fact that the multidrug phenotype always represents the net effect of a panel of resistance-associated genes/gene products, other resistance genes, e.g. those encoding the multidrug resistance-associated protein MRP or the lung resistance protein LRP, were included in the studies. Cytokines such as tumor necrosis factor α and interleukin-2 have been shown to modulate the MDR phenotype in different experimental settings in vitro and in vivo. Several studies have been performed to evaluate their potential as chemosensitizers of tumor cells in the context of a combined application of MDR-associated anticancer drugs like doxorubicin and vincristine with cytokines. Moreover, the capability of cytokines to modulate the expression of MDR-associated genes was demonstrated, either by external addition or by transduction of the respective cytokine gene. Knowledge of the combination effects of cytokines and cytostatics and its link to their MDR-modulating capacity may contribute to a more efficient and to a more individualized immuno-chemotherapy of human malignancies.
Keywords: cytokines, MDR-associated genes, modulation, multidrug resistance, reversal
Full Text
The Full Text of this article is available as a PDF (107.2 KB).
References
- Bargou RC, Jürchott K, Wagener C, Bergmann S, Metzner S, Bommert K, Mapara MY, Winzer K-J, Dietel M, Dörken B, Royer HD. Nuclear localization and increased levels of transcription factor YB-1 in primary human breast cancers are associated with intrinsic MDR1 gene expression. Nature Med. 1997;3:447–450. doi: 10.1038/nm0497-447. [DOI] [PubMed] [Google Scholar]
- Borsellino N, Crescimanno M, Flandina C, Flugy A, D'Allessandro N. Combined activity of interleukin-1 alpha or TNF-alpha and doxorubicin on multidrug resistant cell lines: evidence that TNF and DXR have synergistic antitumor and differentiation-inducing effects. Anticancer Res. 1994;14:2643–2648. [PubMed] [Google Scholar]
- Brock I, Hipfner DR, Nielsen BS, Jensen PB, Deeley RG, Cole SP, Sehested M. Sequential coexpression of the multidrug resistance genes MRP and mdr1 and their products in VP-16 (etoposide)-selected H69 small cell lung cancer cells. Cancer Res. 1995;55:459–462. [PubMed] [Google Scholar]
- Chin KV, Pastan I, Gottesman MM. Function and regulation of the human multidrug resistance gene. Adv Cancer Res. 1993;60:157–180. doi: 10.1016/S0065-230X(08)60825-8. [DOI] [PubMed] [Google Scholar]
- Clynes M. Multiple drug resistance in cancer: cellular, molecular, and clinical approaches. Boston, Dordrecht, London: Kluwer Academic Publishers; 1994. [Google Scholar]
- Cole SP, Bhardwaj G, Gerlach JH, Mackie JE, Grant CE, Almquist KC, Stewart AJ, Kurz EU, Duncan AM, Deeley RG. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science. 1992;258:1650–1654. doi: 10.1126/science.1360704. [DOI] [PubMed] [Google Scholar]
- Combates NJ, Rzepka RW, Chen YN, Cohen D. NF-IL6, a member of the C/EBP family of transcription factors, binds and trans-activates the human MDR1 gene promoter. J Biol Chem. 1994;269:29715–29719. [PubMed] [Google Scholar]
- Cucco C, Calabretta B. In vitroand in vivoreversal of multidrug resistance in a human leukemia-resistant cell line by mdr1 antisense oligodeoxynucleotides. Cancer Res. 1996;56:4332–4337. [PubMed] [Google Scholar]
- Drach J, Gsur A, Hamilton G, Zhao S, Angerler J, Fiegl M, Zojer N, Raderer M, Haberl I, Andreeff M, Huber H. Involvement of P-glycoprotein in the transmembrane transport of interleukin-2 (IL-2), IL-4, and interferon-gamma in normal human T lymphocytes. Blood. 1996;88:1747–1754. [PubMed] [Google Scholar]
- Endicott JA, Ling V. The biochemistry of P-glycoprotein-mediated multidrug resistance. Annu Rev Biochem. 1989;58:137–171. doi: 10.1146/annurev.bi.58.070189.001033. [DOI] [PubMed] [Google Scholar]
- Evans CH, Baker PD. Decreased P-glycoprotein expression in multidrug-sensitive and-resistant human myeloma cells induced by the cytokine leukoregulin. Cancer Res. 1992;52:5893–5899. [PubMed] [Google Scholar]
- Filipits M, Suchomel RW, Dekan G, Haider K, Valdimarsson G, Depisch D, Pirker R. MRP and MDR1 gene expression in primary breast carcinomas. Clin Cancer Res. 1996;2:1231–1237. [PubMed] [Google Scholar]
- Flugy A, Borsellino N, D'Allessandro N. TNF-induced apoptosis in multidrug resistant friend erythroleukemia is not influenced by the P-glycoprotein and glutathione status of the cell line. Oncol Res. 1995;7:559–564. [PubMed] [Google Scholar]
- Fogler WE, Pearson JW, Volker K, Ariyoshi K, Watanabe H, Riggs CW, Wiltrout RH, Longo DL. Enhancement by recombinant human interferon alfa of the reversal of multidrug resistance by MRK-16 monoclonal antibody. J Natl Cancer Inst. 1995;87:94–104. doi: 10.1093/jnci/87.2.94. [DOI] [PubMed] [Google Scholar]
- Ford JM. Experimental reversal of P-glycoprotein-mediated multidrug resistance by pharmacological chemosensitizers. Eur J Cancer. 1996;32A:991–1001. doi: 10.1016/0959-8049(96)00047-0. [DOI] [PubMed] [Google Scholar]
- Germann UA, Pastan I, Gottesman MM. P-glycoproteins: mediators of multidrug resistance. Semin Cell Biol. 1993;4:63–76. doi: 10.1006/scel.1993.1008. [DOI] [PubMed] [Google Scholar]
- Goldsmith ME, Madden MJ, Morrow CS, Cowan KH. A Y-box consensus sequence is required for basal expression of the human multidrug resistance (mdr1) gene. J Biol Chem. 1993;268:5856–5860. [PubMed] [Google Scholar]
- Goldstein LJ. Clinical reversal of drug resistance. Curr Problems Cancer. 1995;19:101–109. [PubMed] [Google Scholar]
- Grant CE, Valdimarsson G, Hipfner DR, Almquist KC, Cole SP, Deeley RG. Overexpression of multidrug resistance-associated protein (MRP) increases resistance to natural product drugs. Cancer Res. 1994;54:357–361. [PubMed] [Google Scholar]
- Gupta S, Tsuruo T. Multidrug resistance in cancer cells: cellular, biochemical, molecular and biological aspects. New York: John Wiley & Sons; 1996. [Google Scholar]
- Hasegawa S, Abe T, Naitu S, Kotoh S, Kumazawa J, Hipfner DR, Deeley RG, Cole SP, Kuwano M. Expression of multidrug resistance-associated protein (MRP), MDR1 and DNA topoisomerase II in human multidrug-resistant bladder cancer cell lines. Br J Cancer. 1995;71:907–913. doi: 10.1038/bjc.1995.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ishihara H, Kajiwara K, Ohshita N, Kimura Y, Nishizaki T, Ito H. IFN-β inhibition of etoposide resistance acquisition in vitro: studies using a human glioblastoma cell line. Anticancer Res. 1995;15:283–288. [PubMed] [Google Scholar]
- Izquierdo MA, Shoemaker RH, Flens MJ, Scheffer GL, Prather TR, Scheper RJ. Overlapping phenotypes of multidrug resistance among panels of human cancer cell lines. Int J Cancer. 1995;65:230–237. doi: 10.1002/(SICI)1097-0215(19960117)65:2<230::AID-IJC17>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
- Kamikaseda K, Stavrou D, Fukui M. The enhanced antitumor activity of DNA topoisomerase II - trapping drugs by natural human tumor necrosis factor against human glioma cell lines in vitro. Oncol Reports. 1994;1:735–738. doi: 10.3892/or.1.4.735. [DOI] [PubMed] [Google Scholar]
- Kang Y, Perry RR. Effect of α-interferon on P-glycoprotein expression and function and on verapamil modulation of doxorubicin resistance. Cancer Res. 1994;54:2952–2958. [PubMed] [Google Scholar]
- Kedar E, Rutkowski Y, Leshem B. Chemoimmunotherapy of murine solid tumors: enhanced therapeutic effects by interleukin-2 combined with interferon alpha and the role of specific T cells. Cancer Immunol Immunother. 1992;35:63–68. doi: 10.1007/BF01741057. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kellen JA. The reversal of multidrug resistance in cancer (review) Anticancer Res. 1993;13:959–961. [PubMed] [Google Scholar]
- Kikuchi A, Hulan V, Minowada J. Effects of tumor necrosis factor alpha, interferon alpha and interferon gamma on non-lymphoid leukemia cell lines: growth inhibition, differentiation induction and drug sensitivity modulation. Cancer Immunol Immunother. 1992;35:257–263. doi: 10.1007/BF01789332. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kobayashi H, Dorai T, Holland JF, Ohnuma T. Reversal of drug sensitivity in multidrug-resistant tumor cells by an MDR1 (PGY1) ribozyme. Cancer Res. 1994;54:1271–1275. [PubMed] [Google Scholar]
- Komarov P, Shtil A, Buckingham L, Roninson I and Coon J (1997) Genes coding for different drug resistance-associated proteins (MDR1, LRP and MRP) are differentially regulated by extracellular stimuli. Proc Am Ass Cancer Res 38: 479.
- Kreuser ED, Wadler S, Thiel E. Biochemical modulation of cytotoxic drugs by cytokines: molecular mechanisms in experimental oncology. Recent Results Cancer Res. 1995;139:371–382. doi: 10.1007/978-3-642-78771-3_28. [DOI] [PubMed] [Google Scholar]
- Krosnick JA, Mule JJ, McIntosh JK, Rosenberg SA. Augmentation of antitumor efficacy by the combination of recombinant tumor necrosis factor and chemotherapeutic agents in vivo. Cancer Res. 1989;49:3729–2733. [PubMed] [Google Scholar]
- Lasek W, Sora M, Wankowicz A, Jakobisiak M. Combination of immunotherapy with cyclophosphamide/actinomycin D chemotherapy potentiates antileukemic effect and reduces toxicity in a L1210 leukemia model in mice. Cancer Lett. 1995;89:137–143. doi: 10.1016/0304-3835(95)90169-8. [DOI] [PubMed] [Google Scholar]
- Lasek W, Giermasz A, Kuc K, Wankowicz A, Feleszko W, Golab J, Zagozdzon, Stoklosa T, Jakobisiak M. Potentiation of the anti-tumor effect of actinomycin D by tumor necrosis factor α in mice: correlation between in vitroand in vivoresults. Int J Cancer. 1996;66:374–379. doi: 10.1002/(SICI)1097-0215(19960503)66:3<374::AID-IJC18>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
- Lasek W, Wankowics A, Kuc K, Feleszko W, Giermasz A, Jakobisiak M. Augmentation of antitumor efficacy by the combination of actinomycin D with tumor necrosis factor-alpha and interferon gamma on a melanoma model in mice. Oncology. 1996;53:31–37. doi: 10.1159/000227531. [DOI] [PubMed] [Google Scholar]
- Licht T, Lübbert M, Martens C, Bross KJ, Fiebig H-H, Mertelsmann R, Herrmann F. Modulation of vindesine and doxorubicin resistance in multidrug-resistant pleural mesothelioma cells by tumor necrosis factor-α. Cytokines Mol Ther. 1995;1:123–132. [PubMed] [Google Scholar]
- Malorni W, Rainaldi G, Tritarelli E, Rivabene R, Cianfriglia M, Lehnert M, Donelli G, Peschele C, Testa U. Tumor necrosis factor alpha is a powerful apoptotic inducer in lymphoid leukemic cells expressing the P-170 glycoprotein. Int J Cancer. 1996;67:238–247. doi: 10.1002/(SICI)1097-0215(19960717)67:2<238::AID-IJC15>3.0.CO;2-7. [DOI] [PubMed] [Google Scholar]
- McLeod HL. Clinical reversal of the multidrug resistance phenotype: true tumour modulation or pharmacokinetic interaction? Eur J Cancer. 1994;30A:2039–2041. doi: 10.1016/0959-8049(94)00423-3. [DOI] [PubMed] [Google Scholar]
- Monti E, Mimnaugh EG, Sinha BK. Synergistic antiproliferative effects of interleukin-1 alpha and doxorubicin against the human ovarian carcinoma cell line (NIH-OVCAR-3) Biochem Pharmacol. 1993;45:2099–2107. doi: 10.1016/0006-2952(93)90022-O. [DOI] [PubMed] [Google Scholar]
- Morgavi P, Cimoli G, Ottoboni C, Michelotti A, Conte P, Parodi S, Russo P. Sensitization of human glioblastoma T98G cells to VP16 and VM26 by human tumor necrosis factor. Anticancer Res. 1995;15:1423–1428. [PubMed] [Google Scholar]
- Ogura M, Takatori T, Tsuruo T. Purification and characterization of NF-R1 that regulates the expression of the human multidrug resistance (MDR1) gene. Nucl Acids Res. 1992;20:5811–5817. doi: 10.1093/nar/20.21.5811. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Osborn L, Kunkel S, Nabel GJ. Tumor necrosis factor alpha and interleukin 1 stimulate the human immunodeficiency virus enhancer by activation of the nuclear factor κB. Proc Natl Acad Sci USA. 1989;86:2336–2340. doi: 10.1073/pnas.86.7.2336. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Park S, Mechetner E. Physiological role of the MDR1 P-glycoprotein in human lymphocytes: Analysis by the UIC2 shift assay. Proc Am Ass Cancer Res. 1998;39:76. [Google Scholar]
- Raderer M, Scheithauer W. Clinical trials of agents that reverse multidrug resistance. Cancer. 1993;72:3553–3563. doi: 10.1002/1097-0142(19931215)72:12<3553::AID-CNCR2820721203>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
- Raghu G, Park SW, Roninson IB, Mechetner EB. Monoclonal antibodies against P-glycoprotein, an MDR1 gene product, inhibit interleukin-2 release from PHA-activated lymphocytes. Exp Hematol. 1996;24:1258–1264. [PubMed] [Google Scholar]
- Raj GV, Khalili K. Identification and characterization of a novel GGA/C-binding protein, GBP-i, that is rapidly inducible by cytokines. Mol Cell Biol. 1994;14:7770–7781. doi: 10.1128/mcb.14.12.7770. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Regenass U, Muller M, Curschellas E, Matter A. Antitumor effects of tumor necrosis factor in combination with chemotherapeutic agents. Int J Cancer. 1987;39:266–273. doi: 10.1002/ijc.2910390224. [DOI] [PubMed] [Google Scholar]
- Roninson R. Molecular and cellular biology of multidrug resistance in tumor cells. New York and London: Plenum Press; 1991. [Google Scholar]
- Safrit JT, Berek JS, Bonavida B. Sensitivity of drug-resistant human ovarian tumor cell lines to combined effects of tumor necrosis factor alpha (TNF-alpha) and doxorubicin: failure of the combination to modulate the MDR phenotype. Gynecol Oncol. 1993;48:214–220. doi: 10.1006/gyno.1993.1036. [DOI] [PubMed] [Google Scholar]
- Salmon SE, Soehnlein B, Dalton S, Meltzer P, Scuderi P. Effects of tumor necrosis factor on sensitive and multidrug resistant human leukemia amd myeloma cell lines. Blood. 1989;74:1723–1727. [PubMed] [Google Scholar]
- Scala S, Pacelli R, Iaffaioli RV, Normanno N, Pepe S, Frasci G, Genua G, Tsuruo T, Tagliaferri P, Bianco AR. Reversal of adriamycin resistance by recombinant alpha-interferon in multidrug resistant human colon carcinoma LoVo-doxorubicin cells. Cancer Res. 1991;51:4898–4902. [PubMed] [Google Scholar]
- Scanlon KJ, Ishida H, Kashani-Sabet M. Ribozyme-mediated reversal of the multidrug-resistant phenotype. Proc Natl Acad Sci USA. 1994;91:11123–11127. doi: 10.1073/pnas.91.23.11123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scheffer GL, Wijngaard PL, Flens MJ, Izquierdo MA, Slovak ML, Pinedo HM, Meijer CJ, Clevers HC, Scheper RJ. The drug-resistance-related protein LRP is the human major vault protein. Nature Med. 1995;1:578–582. doi: 10.1038/nm0695-578. [DOI] [PubMed] [Google Scholar]
- Scheper RJ, Broxterman HJ, Scheffer GL, Kaaijk P, Dalton WS, van Heijningen TH, van Kalken CK, Slovak ML, de Vries EG, van der Valk P, et al. Overexpression of a M(r) 110,000 vesicular protein in non-P-glycoprotein-mediated multidrug resistance. Cancer Res. 1993;53:1475–1479. [PubMed] [Google Scholar]
- Schiller JH, Storer BE, Witt P, Alberti D, Tombes MB, Arzoomanian R, Proctor RA, Mc Carthy D, Brown RR, Voss SD, Remick SC, Grem JL, Borden EC, Trump DL. Biological and clinical effects of intravenous tumor necrosis factor-alpha administered three times weekly. Cancer Res. 1991;51:1651–1658. [PubMed] [Google Scholar]
- Sihdu RS, Bollon AP. Tumor necrosis factor activities and cancer therapy - a perspective. Pharmacol Ther. 1993;57:79–128. doi: 10.1016/0163-7258(93)90037-E. [DOI] [PubMed] [Google Scholar]
- Sola JE, Colombani PM. Modulation of multidrug resistance with antisense oligodeoxynucleotide to mdr1 mRNA. Ann Surg Oncol. 1996;3:80–85. doi: 10.1007/BF02409056. [DOI] [PubMed] [Google Scholar]
- Stein U, Walther W, Wunderlich V. Point mutations in the mdr1 promoter of human osteosarcomas are associated with in vitroresponsiveness to multidrug resistance relevant drugs. Eur J Cancer. 1994;30A:1541–1545. doi: 10.1016/0959-8049(94)00287-F. [DOI] [PubMed] [Google Scholar]
- Stein U, Walther W, Shoemaker RH. Modulation of mdr1 expression by cytokines in human colon carcinoma cells: an approach for reversal of multidrug resistance. Br J Cancer. 1996;74:1384–1391. doi: 10.1038/bjc.1996.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stein U, Walther W, Shoemaker RH. Reversal of multidrug resistance by transduction of cytokine genes into human colon carcinoma cells. J Natl Cancer Inst. 1996;88:1383–1392. doi: 10.1093/jnci/88.19.1383. [DOI] [PubMed] [Google Scholar]
- Stein U, Walther W, Laurencot CM, Scheffer GL, Scheper RJ, Shoemaker RH. Tumor necrosis factor alpha and expression of the multidrug resistance-associated genes LRP and MRP. J Natl Cancer Inst. 1997;89:807–813. doi: 10.1093/jnci/89.11.807. [DOI] [PubMed] [Google Scholar]
- Stein U, Walther W, Lemm M, Naundorf H, Fichtner I. Development and characterization of novel human multidrug resistant mammary carcinoma lines in vitroand in vivo. Int J Cancer. 1997;72:885–891. doi: 10.1002/(SICI)1097-0215(19970904)72:5<885::AID-IJC28>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
- Twentyman PR, Versantvoort CHM. Experimental modulation of MRP (multidrug resistance-associated protein)-mediated resistance. Eur J Cancer. 1996;32A:1002–1009. doi: 10.1016/0959-8049(96)00067-6. [DOI] [PubMed] [Google Scholar]
- Uchiumi T, Kohno K, Tanimura H, Hidaka K, Asakuno K, Abe K, Uchida Y, Kuwano M. Involvement of protein kinase in environmental stress-induced activation of human multidrug resistance 1 (MDR1 ) gene promoter. FEBS Lett. 1993;326:11–16. doi: 10.1016/0014-5793(93)81750-T. [DOI] [PubMed] [Google Scholar]
- Ueda K, Pastan I, Gottesman MM. Isolation and sequence of the promoter region of the multidrug-resistance (P-glycoprotein) gene. J Biol Chem. 1987;262:17432–17436. [PubMed] [Google Scholar]
- Valenti M, Cimoli G, Parodi S, Mariani GL, Venturini M, Conte PF, Russo P. Potentiation of tumor necrosis factor-mediated cell killing by VP16 on human ovarian cancer cell lines. In vitroresults and clinical implications. Eur J Cancer. 1993;29A:1157–1161. doi: 10.1016/s0959-8049(05)80307-7. [DOI] [PubMed] [Google Scholar]
- Wadler S, Schwartz EL. Antineoplastic activity of the combination of interferon and cytotoxic agents against experimental and human malignancies: a review. Cancer Res. 1990;50:3473–3486. [PubMed] [Google Scholar]
- Walther W, Fichtner I, Uckert W. Retrovirus-mediated gene transfer of tumor necrosis factor alpha into colon carcinoma cells generates a growth inhibition. Anticancer Res. 1993;13:1565–1574. [PubMed] [Google Scholar]
- Walther W, Stein U. Influence of cytokines on mdr1 expression in human colon carcinoma cell lines: increased cytotoxicity of MDR relevant drugs. J Cancer Res Clin Oncol. 1994;120:471–478. doi: 10.1007/BF01191800. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walther W, Stein U, Pfeil D. Gene transfer of human TNFα into glioblastoma cells permits modulation of mdr1 expression and potentiation of chemosensitivity. Int J Cancer. 1995;61:832–839. doi: 10.1002/ijc.2910610615. [DOI] [PubMed] [Google Scholar]
- Zhu Q, Center MS. Cloning and sequence analysis of the promoter region of the MRP gene of HL60 cells isolated for resistance to adriamycin. Cancer. 1994;54:4488–4492. [PubMed] [Google Scholar]
- Zhu Q, Center MS. Evidence that SP1 modulates transcriptional activity of the multidrug resistance-associated protein gene. DNA Cell Biol. 1996;15:105–111. doi: 10.1089/dna.1996.15.105. [DOI] [PubMed] [Google Scholar]
- Zyad A, Benard J, Tursz T, Clarke R, Chouaib S. Resistance to TNF-alpha and adriamycin in the human breast cancer MCF-7 cell line: relationship to MDR1, MnSOD, and TNF gene expression. Cancer Res. 1994;554:825–831. [PubMed] [Google Scholar]