Skip to main content
Cytotechnology logoLink to Cytotechnology
. 2006 Aug 3;51(1):29–37. doi: 10.1007/s10616-006-9011-x

Evaluation of recombinant human transferrin (DeltaFerrinTM) as an iron chelator in serum-free media for mammalian cell culture

Joanne Keenan 1,, Dermot Pearson 2, Lorraine O’Driscoll 1, Patrick Gammell 1, Martin Clynes 1
PMCID: PMC3449479  PMID: 19002892

Abstract

DeltaFerrinTM, a yeast-derived recombinant human transferrin produced by Delta Biotechnology Ltd. (Nottingham UK), was found to be a suitable replacement for holo human transferrin in serum-free culture media of the MDCK cell line (chosen because of its transferrin dependence) in short-term screening assays. Long-term subculture was achieved with DeltaFerrinTM supporting growth equivalent to that of holo human transferrin. DeltaFerrinTM and a selection of chemical iron chelators were found in short-term assays to be equivalent to holo human transferrin in supporting growth of MDCK, BHK-21-PPI-C16 and Vero-PPI. In long-term subcultures, however, only DeltaFerrinTM was found to support cell growth in a manner essentially equivalent to holo human transferrin in all three cell lines. For both BHK and Vero variants tested, recombinant preproinsulin production was unaltered by replacing holo human transferrin with DeltaFerrinTM. As such, this is the first report of a recombinant human transferrin produced under animal-free conditions that can act as a universal iron chelator for cells grown in serum-free media (SFM).

Keywords: Cell culture, Iron chelator, DeltaFerrinTM, Recombinant human transferrin, Serum-free media

Full Text

The Full Text of this article is available as a PDF (323.5 KB).

References

  1. Barnes D. Serum-free animal cell culture. BioTechniques. 1987;5:534–542. doi: 10.1038/nbt0687-534. [DOI] [Google Scholar]
  2. Bradshaw GL, Sato GH, McClure DB, Dubes GR. The growth requirements of BHK-21 in serum-free culture. J Cell Physiol. 1994;114:215–221. doi: 10.1002/jcp.1041140211. [DOI] [PubMed] [Google Scholar]
  3. Castle P, Robertson JS. Animal sera, animal sera derivatives and substitutes used in the manufacture of pharmaceuticals: viral safety and regulatory aspects. Dev Biol Standard. 1999;99:191–196. [PubMed] [Google Scholar]
  4. Chu L, Robinson DK. Industrial choices for protein production by large-scale cell culture. Curr Opin Biotechnol. 2001;12:180–187. doi: 10.1016/S0958-1669(00)00197-X. [DOI] [PubMed] [Google Scholar]
  5. Conrad ME, Umbreit JN, Morre EG. Iron absorption and transport. Am J Med Sci. 1994;318:213–229. doi: 10.1097/00000441-199910000-00002. [DOI] [PubMed] [Google Scholar]
  6. Cruz HJ, Moreira JL, Stacey G, Dias EM, Hayes K, Looby D, Griffiths B, Carrondo MJT. Adaptation of BHK cells producing a recombinant protein to serum-free media and protein-free medium. Cytotechnology. 1998;26:59–64. doi: 10.1023/A:1007951813755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Darfler FJ. A protein-free medium for the growth of hybridomas and other cells of the immune system. In Vitro Cell Develop Biol. 1990;26:769–778. doi: 10.1007/BF02623618. [DOI] [PubMed] [Google Scholar]
  8. Fitzsimmons JJ, Sanjal A, Gonzalez C, Fukumoto T, Clemens VR, O’Driscoll SW, Reinholz GG. Serum-free media for periosteal chondrogenesis in vitro. J Orthop Res. 2004;22:716–725. doi: 10.1016/j.orthres.2003.10.020. [DOI] [PubMed] [Google Scholar]
  9. Gammell P, O’Driscoll L, Clynes M. Characterisation of BHK-21-PPI-C16–21 cells engineered to secrete human insulin. Cytotechnology. 2003;41:11–21. doi: 10.1023/A:1024296220592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jayme DW. An animal origin perspective of common constituents of serum-free medium formulations. Dev Biol Standard. 1999;99:181–187. [PubMed] [Google Scholar]
  11. Kallel H, Jouini A, Majoul S, Rourou S. Evaluation of various serum and animal protein free media for the production of a veterinary rabies vaccine in BHK-21 cells. J Biotechnol. 2002;95:195–204. doi: 10.1016/S0168-1656(02)00009-3. [DOI] [PubMed] [Google Scholar]
  12. Keenan J, Clynes M. Replacement of transferring by simple iron compounds for MDCK cells grown and subcultured in serum-free medium. In Vitro Cell Develop Biol. 1996;32:451–453. doi: 10.1007/BF02723044. [DOI] [PubMed] [Google Scholar]
  13. Laskey J, Webb I, Schulman H, Ponka P. Evidence that transferrin supports cell proliferation by supplying iron for DNA synthesis. Exp Cell Res. 1988;176:87–95. doi: 10.1016/0014-4827(88)90123-1. [DOI] [PubMed] [Google Scholar]
  14. Litwin J. The growth of Vero cells in suspension as cell aggregates in serum-free medium. Cytotechnology. 1992;10:169–174. doi: 10.1007/BF00570893. [DOI] [PubMed] [Google Scholar]
  15. Martin A, Clynes M. Comparison of 5 microplate colorimetric assays for in vitro cytotoxicity testing and cell proliferation assays. Cytotechnology. 1993;11:49–58. doi: 10.1007/BF00749057. [DOI] [PubMed] [Google Scholar]
  16. Metcalfe H, Field RP, Froud SJ. The use of 2-hydroxy-2,4,6-cycloheptarin-1-one (Tropolone) as a replacement for transferring. In: Spier RE, Griffiths JB, Berthold W, editors. Animal cell technololgy: products of today, prospects for tomorrow. Oxford/U.K.: Butterwirth-Heinemann; 1994. pp. 88–90. [Google Scholar]
  17. Merten O-W. Development of serum-free media for cell growth and production of viruses/viral vectors – safety issues of animal products used in serum-free media. Dev Biol. 2002;111:233–257. [PubMed] [Google Scholar]
  18. Merten OW, Hannoun C, Manuguerra JC, Ventre F, Petres S. Production of influenza virus in cell cultures for vaccine preparation. In: Cohen S, Shafferman A, editors. Novel strategies in design and production of vaccines. New York, USA: Plenum Press; 1996. pp. 141–151. [Google Scholar]
  19. Merten O-W, Kallel H, Manuguerra JC, Tardy-Panit M, Crainic R, Delpeyroux F, Werf S, Perrin P. The new medium MDSS2N, free of any animal protein supports cell growth and production of various viruses. Cytotechnology. 1999;30:191–201. doi: 10.1023/A:1008021317639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Neumannova V, Richardson DR, Kriegerbeckova V, Kovar J. Growth of human tumor cell lines in transferrin-free low iron medium. In Vitro Cell Develop Biol. 1995;31:625–632. doi: 10.1007/BF02634316. [DOI] [PubMed] [Google Scholar]
  21. O’Driscoll L, Gammell P, Clynes M. Engineering Vero-PPI cells to secrete human insulin. In Vitro Cell Develop Biol. 2002;38:146–153. doi: 10.1290/1071-2690(2002)038<0146:EVCTSH>2.0.CO;2. [DOI] [PubMed] [Google Scholar]
  22. Okamoto T, Tani R, Yabamoto M, Sakamoto A, Takada K, Sato GH, Sato JG. Effects of insulin and transferrin on the generation of lymphokine-activated killer cells in serum-free medium. J Immunol Method. 1996;195:7–14. doi: 10.1016/0022-1759(96)00081-6. [DOI] [PubMed] [Google Scholar]
  23. Perrin P, Malhusudana S, Gontier-Jallet C, Petres S, Tordo N, Merten O-W. An experimental rabies vaccine produced with a new BHK-21 suspension culture process: use of serum-free medium and perfusion-reactor system. Vaccine. 1995;13:1244–1250. doi: 10.1016/0264-410X(94)00022-F. [DOI] [PubMed] [Google Scholar]
  24. Richardson DR, Ponka P. The molecular mechanism of the metabolism and transport of iron in normal and neoplastic cells. Biochim Biophys Acta. 1997;1331:1–40. doi: 10.1016/s0304-4157(96)00014-7. [DOI] [PubMed] [Google Scholar]
  25. Salis C, Goedelmann CJ, Pasquini JM, Soto EF, Setton-Avruj CP. Holo transferrin but not apo transferrin prevents Schwann cell de-differentiation in culture. Dev Neurosci. 2002;24:214–221. doi: 10.1159/000065695. [DOI] [PubMed] [Google Scholar]
  26. Sanders EJ, Cheung E. Transferrin and iron requirements of embryonic mesoderm cells cultured in hydrated collagen matrices. In Vitro Cell Develop Biol. 1988;24:581–587. doi: 10.1007/BF02629094. [DOI] [PubMed] [Google Scholar]
  27. Shintani N, Kohgo Y, Kato J, Kondo H, Fujikawa K, Miyazaki E, Niitsu Y. Expression and extracellular release of transferrin receptors during peripheral erythroid progenitor cell differentiation in liquid culture. Blood. 1994;83:1209–1215. [PubMed] [Google Scholar]
  28. Taub M, Chuman L, Saier MH, Sato G. Growth of MDCK in hormonally defined serum-free medium. Proc Natl Acad Sci USA. 1979;76:3338–3342. doi: 10.1073/pnas.76.7.3338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Vyhlidal C, Li X, Safe S. Estrogen regulation of transferrin gene expression in MCF-7 human breast cancer cells. J Mol Enodcrinol. 2002;29:305–317. doi: 10.1677/jme.0.0290305. [DOI] [PubMed] [Google Scholar]
  30. Wong VVT, Ho KW, Yap MGS. Evaluation of insulin-mimetic trace metals as insulin replacements in mammalian cell cultures. Cytotechnology. 2004;45:107–115. doi: 10.1007/s10616-004-6173-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Yabe N, Kato M, Matsuya Y, Yamane I, Iizuka M, Takayoshi H, Suzuki K. Role of iron chelators in growth-promoting effect on mouse hybridoma cells in a chemically defined medium. In Vitro Cell Develop Biol. 1987;23:815–820. doi: 10.1007/BF02620959. [DOI] [PubMed] [Google Scholar]
  32. Yamada K, Ikeda I, Sughara T, Hashizume S, Shirahata S, Murakami H. Stimulation of proliferation and immunoglobulin M production by lactoferrin in human–human and mouse–mouse hybridoma cultures in serum-free conditions. Cytotechnology. 1990;3:123–131. doi: 10.1007/BF00143674. [DOI] [PubMed] [Google Scholar]

Articles from Cytotechnology are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES