Abstract
Chondrogenic differentiation of mesenchymal cells is generally thought to be initiated by the inductive action of specific growth factors and depends on intimate cell-cell interactions. The aim of our investigation was to characterize the influences of basic fibroblast growth factor (bFGF) and ferroussulfate (FeSO4) on proliferation and differentiation of human articular chondrocytes (HAC). This is the first report of the effects of FeSO4 on chondrogenesis of HAC. Multiplied chondrocytes of hip and shoulder joints were cultured in chondrocyte growth medium supplemented with bFGF, FeSO4, or both bFGF + FeSO4 for4weeks. A 20 μl aliquot of a cell suspension containing2 × 107 cells ml−1 was delivered onto each well of 24-well tissue culture plates. Cells cultured with the growth medium only was used as a control. Alamar blue and alcian blue staining were done to determine the chondrocyte proliferation and differentiation, respectively, after 4 weeks. The samples exposed to bFGF, FeSO4, and combination of both indicated sufficient cell proliferation similar to the control level. Differentiations of the HAC exposed to bFGF, FeSO4,and bFGF + FeSO4 were 1.2-, 2.0-, and 2.2-fold of the control, respectively. Therefore, chondrocyte differentiation was significantly enhanced by the addition of FeSO4 andbFGF + FeSO4. The combined effects of bFGF and FeSO4 were additive, rather than synergistic. These results suggest that treatment with ferrous sulfate alone or in combination with basic fibroblast growth factor etc, is a powerful tool to promote the differentiation of HAC for the clinical application.
Keywords: Basic fibroblast growth factor, Enhancement of chondral differentiation, Ferrous sulfate, Human chondrocytes, Micromass culture, Tissue engineering
Full Text
The Full Text of this article is available as a PDF (3.3 MB).
References
- Brown C.C., Balian G. Effect of heparin on synthesis of short chain collagen by chondrocytes and smooth muscle cells. J. Cell. Biol. 1987;105:1007–1012. doi: 10.1083/jcb.105.2.1007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bohme K., Conscience-Egli M., Tschan T., Winterhalter K.H., Bruckner P. Induction of proliferation or hypertrophy of chondrocytes in serum-free culture: the role of insulin-like growth factor-I, insulin, or thyroxine. J. Cell. Biol. 1992;116:1035–1042. doi: 10.1083/jcb.116.4.1035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bujia J., Sittinger M., Wilmes E., Hammer C. Effect of growth factors on cell proliferation by human nasal septal chondrocytes cultured in monolayer. Acta. Otolaryngol. 1994;114:539–543. doi: 10.3109/00016489409126100. [DOI] [PubMed] [Google Scholar]
- Bujia J., Pitzke P., Kastenbauer E., Wilmes E., Hammer C. Effect of growth factors on matrix synthesis by human nasal chondrocytes cultured in monolayer and in agar. Eur. Arch. Otorhinolaryngol. 1996;253:336–340. doi: 10.1007/BF00178288. [DOI] [PubMed] [Google Scholar]
- Dreyfus J., Brunet-de Carvalho N., Duprez D., Raulais D., Vigny M. HB-GAM/ pleiotrophin but not RIHB/midkine enhances chondrogenesis in micromass culture. Exp. Cell. Res. 1998;241:171–180. doi: 10.1006/excr.1998.4040. [DOI] [PubMed] [Google Scholar]
- De Luca F., Uyeda J.A., Mericq V., Mancilla E.E., Yanovski J.A., Barnes K.M., et al. Retinoic acid is a potent regulator of growth plate chondrogenesis. Endocrinology. 2000;141:346–353. doi: 10.1210/en.141.1.346. [DOI] [PubMed] [Google Scholar]
- Fujisato T., Sajiki T., Liu Q., Ikada Y. Effect of basic fibroblast growth factor on cartilage regeneration in chondrocyteseeded collagen sponge scaffold. Biomaterials. 1996;17:155–162. doi: 10.1016/0142-9612(96)85760-7. [DOI] [PubMed] [Google Scholar]
- Fukuda K., Dan H., Takayama M., Kumano F., Saitoh M., Tanaka S. Hyaluronic acid increases proteoglycan synthesis in bovine articular cartilage in the presence of interleukin-1. J. Pharmacol. Exp. Ther. 1996;277:1672–1675. [PubMed] [Google Scholar]
- Fujimoto E., Ochi M., Kato Y., Mochizuki Y., Sumen Y., Ikuta Y. Beneficial effect of basic fibroblast growth factor on the repair of full-thickness defects in rabbit articular cartilage. Arch. Orthop. Trauma. Surg. 1999;119:139–145. doi: 10.1007/s004020050377. [DOI] [PubMed] [Google Scholar]
- Green W.T., Jr. Articular cartilage repair. Behavior of rabbit chondrocytes during tissue culture and subsequent allografting. Clin. Orthop. 1977;124:237–250. [PubMed] [Google Scholar]
- Harper J., Harper E. Insulin stimulates secretion of a collagenase inhibitor by Swarm rat chondrosarcoma chon-drocytes. Biochem. Biophys. Res. Commun. 1987;147:550–555. doi: 10.1016/0006-291X(87)90966-1. [DOI] [PubMed] [Google Scholar]
- Ito K., Fujisato T., Ikada Y. Implantation of cell seeded biodegradable polymers for tissue reconstruction. Mater. Res. Soc. Symp. Proc. 1992;252:359–365. [Google Scholar]
- Kato Y., Iwamoto M., Koike T., Suzuki F. Effect of vanadate on cartilage-matrix proteoglycan synthesis in rabbit costal chondrocyte cultures. J. Cell. Biol. 1987;104:311–319. doi: 10.1083/jcb.104.2.311. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kimelman D., Abraham J.A., Haaparanta T., Palisi T.M., Kirschner M.W. The presence of fibroblast growth factor in the frog egg: its role as a natural mesoderm inducer. Science. 1988;242:1053–1056. doi: 10.1126/science.3194757. [DOI] [PubMed] [Google Scholar]
- Kistler A., Tsuchiya T., Tsuchiya M., Klaus M. Teratogenicity of arotinoids (retinoids) in vivoand in vitro. Arch. Toxicol. 1990;64:616–622. doi: 10.1007/BF01974689. [DOI] [PubMed] [Google Scholar]
- Kireeva M.L., MO F.E., Yang G.P., Lau L.F. Cyr61, a product of a growth factor-inducible immediate-early gene, promotes cell proliferation, migration, and adhesion. Mol. Cell. Biol. 1996;16:1326–1334. doi: 10.1128/mcb.16.4.1326. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kawasaki K., Ochi M., Uchio Y., Adachi N., Matsusaki M. Hyaluronic acid enhances proliferation and chondroitin sulfate synthesis in cultured chondrocytes embedded in collagen gels. J. Cell. Physiol. 1999;179:142–148. doi: 10.1002/(SICI)1097-4652(199905)179:2<142::AID-JCP4>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
- Lee J.D., Hwang O., Kim S.W., Han S. Primary cultured chondrocytes of different origins respond differently to bFGF and TGF-beta. Life Sci. 1977;61:293–299. doi: 10.1016/s0024-3205(97)00385-8. [DOI] [PubMed] [Google Scholar]
- Larsen N.E., Lombard K.M., Parent E.G., Balazs E.A. Effect of hylan on cartilage and chondrocyte cultures. J. Orthop. Res. 1992;10:23–32. doi: 10.1002/jor.1100100104. [DOI] [PubMed] [Google Scholar]
- Mancilla E.E., De Luca F., Uyeda J.A., Czerwiec F.S., Baron J. Effects of fibroblast growth factor-2 on longitudinal bone growth. Endocrinology. 1998;139:2900–2904. doi: 10.1210/en.139.6.2900. [DOI] [PubMed] [Google Scholar]
- Matsusaki M., Ochi M., Uchio Y., Shu N., Kurioka H., Kawasaki K., et al. Effects of basic fibroblast growth factor on proliferation and phenotype expression of chondrocytes embedded in collagen gel. Gen. Pharmacol. 1998;31:759–764. doi: 10.1016/s0306-3623(98)00105-0. [DOI] [PubMed] [Google Scholar]
- Panagakos F.S. Transforming growth factor- alpha stimulates chemotaxis of osteoblasts and osteoblast-like cells in vitro. Biochem. Mol. Biol. Int. 1994;33:643–650. [PubMed] [Google Scholar]
- Pizette S., Niswander L. BMPs are required at two steps of limb chondrogenesis: formation of prechondrogenic condensations and their differentiation into chondrocytes. Dev. Biol. 2000;219:237–249. doi: 10.1006/dbio.2000.9610. [DOI] [PubMed] [Google Scholar]
- Quarto R., Campanile G., Cancedda R., Dozin B. Thyroid hormone, insulin, and glucocorticoids are sufficient to support chondrocyte differentiation to hypertrophy: a serum-free analysis. J. Cell. Biol. 1992;119:989–995. doi: 10.1083/jcb.119.4.989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quatela V.C., Sherris D.A., Rosier R.N. The human auricular chondrocyte. Responses to growth factors. Arch. Otolaryngol. Head Neck Surg. 1993;119:32–37. doi: 10.1001/archotol.1993.01880130034004. [DOI] [PubMed] [Google Scholar]
- Redini F., Daireaux M., Mauviel A., Galera P., Loyau G., Pujol J.P. Characterization of proteoglycans synthesized by rabbit articular chondrocytes in response to transforming growth factor-beta (TGF-beta) Biochim. Biophys. Acta. 1991;1093:196–206. doi: 10.1016/0167-4889(91)90123-F. [DOI] [PubMed] [Google Scholar]
- Stevens R.L., Hascall V.C. Characterization of proteoglycans synthesized by rat chondrosarcoma chondrocytes treated with multiplication-stimulating activity and insulin. J. Biol. Chem. 1981;256:2053–2058. [PubMed] [Google Scholar]
- Slack J.M.W., Darlington B.G., Heath J.K., Godsave S.F. Mesoderm induction in early Xenopus embryos by heparin binding growth factors. Nature. 1987;326:197–200. doi: 10.1038/326197a0. [DOI] [PubMed] [Google Scholar]
- Shimazu A., Jikko A., Iwamoto M., Koike T., Yan W., Okada Y., et al. Effects of hyaluronic acid on the release of proteoglycan from the cell matrix in rabbit chondrocyte cultures in the presence and absence of cytokines. Arthritis Rheum. 1993;36:247–253. doi: 10.1002/art.1780360217. [DOI] [PubMed] [Google Scholar]
- Sugiura N., Sakurai K., Hori Y., Karasawa K., Suzuki S., Kimata K. Preparation of lipid-derivatized glycosaminoglycans to probe a regulatory function of the carbohydrate moieties of proteoglycans in cell-matrix interaction. J. Biol. Chem. 1993;268:15779–15787. [PubMed] [Google Scholar]
- Seko Y., Tanaka Y., Tokoro T. Influence of bFGF as a potent growth stimulator and TGF-beta as a growth regulator on scleral chondrocytes and scleral fibroblasts in vitro. Ophthalmic Res. 1995;27:144–152. doi: 10.1159/000267651. [DOI] [PubMed] [Google Scholar]
- Toolan B.C., Frenkel S.R., Pachence J.M., Yalowitz L., Alexander H. Effects of growth-factor-enhanced culture on a chondrocyte-collagen implant for cartilage repair. J. Biomed Mater Res. 1996;31:273–280. doi: 10.1002/(SICI)1097-4636(199606)31:2<273::AID-JBM15>3.0.CO;2-M. [DOI] [PubMed] [Google Scholar]
- Wiebkin O.W., Muir H. Influence of the cells on the pericellular environment. The effect of hyaluronic acid on proteoglycan synthesis and secretion by chondrocytes of adult cartilage. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 1975;271:283–291. doi: 10.1098/rstb.1975.0053. [DOI] [PubMed] [Google Scholar]
- Wataha J.C., Lockwood P.E., Schedle A. Effect of silver, copper, mercury, and nickel ions on cellular proliferation during extended, low-dose exposures. J. Biomed. Mater. Res. 2000;52:360–364. doi: 10.1002/1097-4636(200011)52:2<360::AID-JBM16>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
- Yamagata M., Suzuki S., Akiyama S.K., Yamada K.M., Kimata K. Regulation of cell-substrate adhesion by proteoglycans immobilized on extracellular substrates. J. Biol. Chem. 1989;264:8012–8018. [PubMed] [Google Scholar]