Skip to main content
Cytotechnology logoLink to Cytotechnology
. 2005 Jan;47(1-3):19–27. doi: 10.1007/s10616-005-3752-9

Effect of Subcultivation of Human Bone Marrow Mesenchymal Stem on their Capacities for Chondrogenesis, Supporting Hematopoiesis, and Telomea Length

Masaki Nakahara 1, Mutsumi Takagi 1,4,, Takako Hattori 2, Shigeyuki Wakitani 3, Toshiomi Yoshida 1
PMCID: PMC3449821  PMID: 19003041

Abstract

Effects of subcultivation of human bone marrow mesenchymal stem cells on their capacities for chondrogenesis and supporting hematopoiesis, and telomea length were investigated. Mesenchymal stem cells were isolated from human bone marrow aspirates and subcultivated several times at 37 °C under a 5% CO2 atmosphere employing DMEM medium containing 10% FCS up to the 20th population doubling level (PDL). The ratio of CD45 CD105+ cells among these cells slightly increased as PDL increased. However, there was no marked change in the chondrogenic capacity of these cells, which was confirmed by expression assay of aggrecan mRNA and Safranin O staining after pellet cell cultivation. The change in capacity to support hematopoiesis of cord blood cells was not observed among cells with various PDLs. On the other hand, telomere length markedly decreased as PDL increased at a higher rate than that at which telomere length of primary mesenchymal stem cells decreased as the age of donor increased.

Keywords: Chondrogenesis, Hematopoiesis, Mesenchymal stem cell, Population doubling level, Subcultivation, Telomere

Full Text

The Full Text of this article is available as a PDF (331.8 KB).

References

  1. Akiyama M., Hoshi Y., Sakurai S., Yamada H., Yamada O., Mizoguchi H. Changes of telomere length in children after hematopoietic stem cell transplantation. Bone Marrow Transplant. 1998a;21(2):167–171. doi: 10.1038/sj.bmt.1701060. [DOI] [PubMed] [Google Scholar]
  2. Akiyama M., Uchiyama H., Hoshi Y., Yano S., Asai O., Kuraishi Y., Yamada O., Mizoguchi H., Yamada H. Changes of telomere length after hematopoietic stem cell transplantation. Exp. Hematol. 1998b;26(8):359–365. [Google Scholar]
  3. Allsopp R.C., Vaziri H., Patterson C., Goldstein S., Younglai E.V., Futcher A.B., Greider C.W., Harley C.B. Telomere length predicts replicative capacity of human fibroblasts. PNAS USA. 1992;89(21):10114–10118. doi: 10.1073/pnas.89.21.10114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Banfi A., Muraglia A., Dozin B., Mastrogiacomo M., Cancedda R., Quarto R. Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells: implications for their use in cell therapy. Exp. Hematol. 2000;28:707–715. doi: 10.1016/S0301-472X(00)00160-0. [DOI] [PubMed] [Google Scholar]
  5. Barry F.P., Boynton R.E., Haynesworth S., Murphy J.M., Zaia J. The monoclonal antibody SH-2, raised against human mesenchymal stem cells, recognizes an epitope on endoglin (CD105) Biochem. Biophys. Res. Commun. 1999;265:134–139. doi: 10.1006/bbrc.1999.1620. [DOI] [PubMed] [Google Scholar]
  6. Broxmeyer H.E. Biomolecule–cell interactions and the regulation of myelopoiesis. Int. J. Cell Cloning. 1986;4:378–405. doi: 10.1002/stem.5530040601. [DOI] [PubMed] [Google Scholar]
  7. Bruder S.P., Jaiswal N., Haynesworth S.E. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J. Cell. Biochem. 1997;64:278–294. doi: 10.1002/(SICI)1097-4644(199702)64:2<278::AID-JCB11>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
  8. Bruder S.P., Kurth A.A., Shea M., Hayes W.C., Jaiswal N., Kadiyala S. Bone regeneration by implantation of purifiedculture-expanded human mesenchymal stem cells. J. Orthop. Res. 1998;16:155–162. doi: 10.1002/jor.1100160202. [DOI] [PubMed] [Google Scholar]
  9. Caplan A.I. Mesenchymal stem cells. J. Orthop. Res. 1991;9:641–650. doi: 10.1002/jor.1100090504. [DOI] [PubMed] [Google Scholar]
  10. Caplan A.I., Fink D.J., Goto T., Linton A.E., Young R.G., Wakitani S., Goldberg V.M., Haynesworth S.E. Mesenchymal stem cells and tissue repair. In: Jackson D.W., editor. The Anterior Cruciate Ligament: Current and Future Concepts. New York: Raven Press, Ltd.; 1993. pp. 405–417. [Google Scholar]
  11. Counter C.M., Avilion A.A., LeFeuvre C.E., Stewart N.G., Greider C.W., Harley C.B., Bacchetti S. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 1992;11:1921–1929. doi: 10.1002/j.1460-2075.1992.tb05245.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dennis J.E., Caplan A.I. Differentiation potential of conditionally immortalized mesenchymal progenitor cells from adult marrow of a H-2Kb-tsA58 transgenic mouse. J. Cell. Physiol. 1996;167:523–538. doi: 10.1002/(SICI)1097-4652(199606)167:3<523::AID-JCP16>3.0.CO;2-4. [DOI] [PubMed] [Google Scholar]
  13. Dexter T.M., Spooncer E. Growth and differentiation in the hemopoietic system. Annu. Rev. Cell Biol. 1987;3:423–441. doi: 10.1146/annurev.cb.03.110187.002231. [DOI] [PubMed] [Google Scholar]
  14. Dorshkind K. Regulation of hemopoiesis by bone marrow stromal cells and their products. Annu. Rev. Immunol. 1990;8:111–137. doi: 10.1146/annurev.iy.08.040190.000551. [DOI] [PubMed] [Google Scholar]
  15. Harley C.B., Futcher A.B., Greider C.W. Telomeres shorten during ageing of human fibroblasts. Nature. 1990;345:458–460. doi: 10.1038/345458a0. [DOI] [PubMed] [Google Scholar]
  16. Kohler T., Plettig R., Wetzstein W., Schaffer B., Ordemann R., Nagels H.O., Ehninger G., Bornhauser M. Defining optimum conditions for the ex vivo expansion of human umbilical cord blood cells. Influences of progenitor enrichmentinterference with feeder layers, early-acting cytokines and agitation of culture vessels. Stem cells. 1999;17(1):19–24. doi: 10.1002/stem.170019. [DOI] [PubMed] [Google Scholar]
  17. Lustiga J., Kurtz S., Shore D. Involvement of the silencer and UAS binding-protein RAPI in regulation of telomere length. Science. 1990;250(4980):549–553. doi: 10.1126/science.2237406. [DOI] [PubMed] [Google Scholar]
  18. Majumdar M.K., Thiede M.A., Mosca J.D., Moorman M., Gerson S.L. Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J. Cell. Physiol. 1998;176:57–66. doi: 10.1002/(SICI)1097-4652(199807)176:1<57::AID-JCP7>3.0.CO;2-7. [DOI] [PubMed] [Google Scholar]
  19. Majumdar M.K., Thiede M.A., Haynesworth S.E., Bruder S.P., Gerson S.L. Human marrow-derived mesenchymal stem cells (MSCs) express hematopoietic cytokines and support long-term hematopoiesis when differentiated toward stromal and osteogenic lineage. J. Hematother. Stem Cell Res. 2000;9:841–848. doi: 10.1089/152581600750062264. [DOI] [PubMed] [Google Scholar]
  20. Pittenger M.F., Mackay A.M., Beck S.C., Jaiswal R.K., Douglas R., Mosca J.D., Moorman M.A., Simonetti D.W., Craig S., Marshak D.R. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;28:143–147. doi: 10.1126/science.284.5411.143. [DOI] [PubMed] [Google Scholar]
  21. Rudolph K.L., Chang S., Lee H.W., Blasco M., Gottlieb G.J., Greider C., DePinho R.A. Longevity, stress responseand cancer in aging telomerase-deficient mice. Cell. 1999;96:701–712. doi: 10.1016/S0092-8674(00)80580-2. [DOI] [PubMed] [Google Scholar]
  22. Takagi M., Nakamura T., Matsuda C., Hattori T., Wakitani S., Yoshida T. In vitro proliferation of human bone marrow mesenchymal stem cells employing donor serum and basic fibroblast growth factor. Cytotechnology. 2003;43:89–96. doi: 10.1023/B:CYTO.0000039911.46200.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Takubo K., Izumiyama-Shimomura N., Honma N., Sawabe M., Arai T., Kato M., Oshimura M., Nakamura K.I. Telomere lengths are characteristic in each human individual. Exp. Gerontol. 2002;37(4):523–531. doi: 10.1016/S0531-5565(01)00218-2. [DOI] [PubMed] [Google Scholar]
  24. Tsuji T., Nishimura-Morita Y., Watanabe Y. A murine stromal cell line promotes the expansion of CD34high+-primitive progenitor cells isolated from human umbilical cord blood in combination with human cytokines. Growth Factors. 1999;16:225–240. doi: 10.3109/08977199909002132. [DOI] [PubMed] [Google Scholar]
  25. Verfaillie C., Hurley R., Bhatia R. Role of bone marrow matrix in normal and abnormal hematopoiesis. Crit. Rev. Oncol. Hematol. 1994;16:201–224. doi: 10.1016/1040-8428(94)90071-x. [DOI] [PubMed] [Google Scholar]
  26. Wakitani S., Goto T., Pineda S.J., Young R.G., Mansour J.M., Caplan A.I., Goldberg V.M. Mesenchymal cell-based repair of large full-thickness defects of articular-cartilage. J. Bone Joint Surg. Am. 1994;76:579–592. doi: 10.2106/00004623-199404000-00013. [DOI] [PubMed] [Google Scholar]
  27. Wakitani S., Saito T., Caplan A.I. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve. 1995;18:1417–1426. doi: 10.1002/mus.880181212. [DOI] [PubMed] [Google Scholar]
  28. Yamaguchi M., Hirayama F., Kanai M., Sato N., Fukazawa K., Yamashita K., Sawada K., Koike K., Kuwabara M., Ikeda H., Ikebuchi K. Serum-free coculture system for ex vivo expansion of human cord blood primitive progenitors and SCID mouse-reconstituting cells using human bone marrow primary stromal cells. Exp. Hematol. 2001;29:174–182. doi: 10.1016/S0301-472X(00)00653-6. [DOI] [PubMed] [Google Scholar]
  29. Young R.G., Butler D.L., Weber W., Caplan A.I., Gordon S.L., Fink D.J. Use of mesenchymal stem cells in a collagen matrix for Achilles tendon repair. J. Orthop. Res. 1998;16:406–413. doi: 10.1002/jor.1100160403. [DOI] [PubMed] [Google Scholar]

Articles from Cytotechnology are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES