Skip to main content
Cytotechnology logoLink to Cytotechnology
. 2003 Nov;43(1-3):73–80. doi: 10.1023/B:CYTO.0000039918.80472.0e

Identification of the Genes Specifically Expressed in Orally Tolerized T Cells

Takayasu Gotoh 1, Wataru Ise 1, Atsuko Nonaka 1, Shuichi Hamaguchi 1, Satoshi Hachimura 1, Shuichi Kaminogawa 1,2
PMCID: PMC3449604  PMID: 19003210

Abstract

Oral tolerance is the systemic immunological unresponsiveness that occurs after feeding protein antigens. Its physiological role is thought to be the prevention of hypersensitivity to food antigens, and its therapeutic use to treat inflammatory diseases has been suggested. Although it has been shown that CD4+ T cells mediate oral tolerance, the precise molecular mechanisms remain unclear. In the present study, we employed suppression subtractive hybridization and identified 10 genes specifically expressed in orally tolerized T cells. These included genes that were interesting in terms of their putative functions in the negative regulation of T cell activation, e.g. Culin 1, LAX, and Zfhx1b, as well as four genes that encoded unknown proteins. We further investigated the expression of these genes in hyporesponsive T cells induced in vitro (in vitro anergized T cells). We found that six of the 10 genes were highly expressed in these cells, and kinetic studies suggested that one was associated with the induction of anergy, while the other five were associated with the maintenance of anergy. The remaining 4 genes that were not expressed in in vitro anergized T cells are also of interest as they may play a specific role in in vivo T cell tolerance. Functional analysis of these genes should help to understand the complex mechanisms underlying the induction and maintenance of oral tolerance, and moreover, in vivo immune tolerance in general.

Keywords: anergy, oral tolerance, suppression subtractive hybridization, T cell

Full Text

The Full Text of this article is available as a PDF (105.6 KB).

References

  1. Anandasabapathy N., Ford G.S., Bloom D., Holness C., Par-agas V., Seroogy C., Skrenta H., Hollenhorst M., Fathman C., Soares L. GRAIL: an E3 ubiquitin ligase that inhibits cytokine gene transcription is expressed in anergic CD4 + T cells. Immunity. 2003;18:535–547. doi: 10.1016/S1074-7613(03)00084-0. [DOI] [PubMed] [Google Scholar]
  2. Asai K., Hachimura S., Kimura M., Toraya T., Yamashita M., Nakayama T., Kaminogawa S. T cell hypore-sponsiveness induced by oral administration of ovalbumin is associated with impaired NFAT nuclear translocation and p27kip1 degradation. J.Immunol. 2002;169:4723–4731. doi: 10.4049/jimmunol.169.9.4723. [DOI] [PubMed] [Google Scholar]
  3. Boussiotis V.A., Freeman G.J., Taylor P.A., Berezovskaya A., Grass I., Blazar B., Nadler L.M. p27kip1 func-tion as an anergy factor inhibiting interleukin 2 transcription and clonal expansion of alloreactive human and mouse helper T lymphocytes. Nat.Med. 2000;6:290–297. doi: 10.1038/73144. [DOI] [PubMed] [Google Scholar]
  4. Chen Y., Kuchroo V.K., Inobe J., Haffer D., Weiner H.L. Regulatory T cell clones induced by oral toler-ance: suppression of autoimmune encephalomyelitis. Science. 1994;265:1237–1240. doi: 10.1126/science.7520605. [DOI] [PubMed] [Google Scholar]
  5. Chen Y., Inobe J., Marks R., Gonnella P., Kuchroo V., Weiner H.L. Peripheral deletion of antigen-reactive T cells in oral tolerance. Nature. 1995;376:177–180. doi: 10.1038/376177a0. [DOI] [PubMed] [Google Scholar]
  6. Fairley E.A., Riddell A., Ellis J., Kendrick-Jones J. The cell cycle dependent mislocalisation of emerin may con-tribute to the Emery-Dreifuss muscular dystrophy pheno-type. J.Cell.Sci. 2002;115:341–354. doi: 10.1242/jcs.115.2.341. [DOI] [PubMed] [Google Scholar]
  7. Faria A., Weiner H.L. Oral tolerance: mechanisms and therapeutic applications. Adv.Immunol. 1999;73:153. doi: 10.1016/S0065-2776(08)60787-7. [DOI] [PubMed] [Google Scholar]
  8. Fields P.E., Gajewsky T., Fitch F.W. Blocked Ras activation in anergic CD4 + T cells. Science. 1996;271:1276–1278. doi: 10.1126/science.271.5253.1276. [DOI] [PubMed] [Google Scholar]
  9. Garside P., Stell M., Worthey E.A., Kewin P.J., Howie S.E., Harrison D.J., Bishop D., Mowat A.M. Lympho-cytes from orally tolerized mice display enhanced suscepti-bility to death by apoptosis when cultured in the absence of antigen in vitro. Am.J.Pathol. 1996;149:1971–1979. [PMC free article] [PubMed] [Google Scholar]
  10. Garside P., Mowat A.M. Oral tolerance. Semin. Immunol. 2001;13:177–185. doi: 10.1006/smim.2001.0310. [DOI] [PubMed] [Google Scholar]
  11. Hashiguchi M., Hachimura S., Ametani A., Kaminogawa S. Th2 polarization enhanced by oral administration on higher doses of antigen. Cytotechnology. 2000;33:237–245. doi: 10.1023/A:1008102304740. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ise W., Totsuka M., Sogawa Y., Ametani A., Hachimura S., Sato T., Kumagai Y., Habu S., Kaminogawa S. Naïve CD4 + T cell exhibit distinct expression patterns of cytokines and cell surface molecules on their primary re-sponses to varying dose of antigen. J.Immunol. 2002;168:3234–3250. doi: 10.4049/jimmunol.168.7.3242. [DOI] [PubMed] [Google Scholar]
  13. Jackson S.K., Deloose A., Gilbert K.M. Induction of anergy in Th1 cells associated with increased level of cyclin-dependent kinase inhibitors p21Cip1 and p27Kip1. J.Immunol. 2001;166:952–958. doi: 10.4049/jimmunol.166.2.952. [DOI] [PubMed] [Google Scholar]
  14. Kaji T., Hachimura S., Ise W., Kaminogawa S. Proteome analysis reveals caspase activation in hyporespon-sive CD4 T lymphocytes induced in vivo by the oral admin-istration of antigen. J.Biol.Chem. 2003;278:27836–27843. doi: 10.1074/jbc.M212820200. [DOI] [PubMed] [Google Scholar]
  15. Li W., Whaley C.D., Mondino A., Muller D.L. Blocked signal transduction to the ERK and JNK protein kinases in anergic CD4 + T cells. Science. 1996;271:1272–1276. doi: 10.1126/science.271.5253.1272. [DOI] [PubMed] [Google Scholar]
  16. Malamed D., Friedman A. Direct evidence for anergy in T lymphocytes tolerized by oral administration of oval-bumin. Eur.J.Immunol. 1993;23:935–942. doi: 10.1002/eji.1830230426. [DOI] [PubMed] [Google Scholar]
  17. Mondino A., Whaley C.D., DeSilva D.R., Li W., Jenkins M.K., Muller D.L. Defective transcription of the IL-2 gene is associated with impaired expression of c-Fos,FosB, and JunB in anergic T helper 1 cells. J.Immunol. 1996;157:2048–2057. [PubMed] [Google Scholar]
  18. Murphy K.M., Heimberger A., Loh D.Y. Induction by antigen of intrathymic apoptosis of CD4 + CD8 + TCR lo thymocytes in vivo. Science. 1990;250:1720–1723. doi: 10.1126/science.2125367. [DOI] [PubMed] [Google Scholar]
  19. Nishiki T., Nihonmatsu I., Tsuhara Y., Kawasaki M., Sekig-uchi M., Sato K., Mizoguchi A., Takahashi M. Distribution of soluble N-ethylmaleimide fusion protein attachment proteins (SNAPs)in the rat nervous system. Neuroscience. 2001;107:363–371. doi: 10.1016/S0306-4522(01)00370-0. [DOI] [PubMed] [Google Scholar]
  20. Sakamoto K.M., Kim K.B., Kumagai A., Mercurio F., Crews C., Deshaies R. Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiq-uitination and degradation. Proc.Natl.Acad.Sci. 2001;98:8554–8559. doi: 10.1073/pnas.141230798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Strobel S., Mowat A.M. Immune responses to dietary antigens: oral tolerance. Immunol.Today. 1998;19:173–181. doi: 10.1016/S0167-5699(97)01239-5. [DOI] [PubMed] [Google Scholar]
  22. Sundstedt A., Sigvardsson M., Leanderson T., Hedlund G., Kalland T., Dohlsten M. In vivo anergized CD4+T cells express perturbed AP01 and NF. Proc.Natl.Acad.Sci. 1996;93:979–984. doi: 10.1073/pnas.93.3.979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Taylor G.A., Thompson M.J., Lai W., Blackshear P.J. Phosphorylation of tristetraprolin,a potential zinc nger transcription factor,by mitogen stimulation in intact cells and by mitogen-activated protein kinase in vitro. J.Biol. Chem. 1995;270:13341–13347. doi: 10.1074/jbc.270.22.13341. [DOI] [PubMed] [Google Scholar]
  24. Tsuji N.M., Mizumachi K., Kurisaki J. Interleukin-10-secreting Peyer 's patch cells are responsible for active suppression in low-dose oral tolerance. Immunology. 2001;103:458–464. doi: 10.1046/j.1365-2567.2001.01265.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tzachanis D., Freeman G.J., Hirano N., van Puijenbroek A.A., Delfs M.W., Berezovskaya A., Nadler L., Boussiotis V.A. Tob is a negative regulator of activation that is expressed in anergic and quiescent T cells. Nat.Immunol. 2001;12:1174–1182. doi: 10.1038/ni730. [DOI] [PubMed] [Google Scholar]
  26. Utting O., Teh S., Teh H.-S. A population of in vivo anergized T cells with a lower activation threshold for the induction of CD25 exhibit differential requirements in mobilization of intracellular calcium and mitogen-activated protein kinase activation. J.Immunol. 2000;164:2881–2889. doi: 10.4049/jimmunol.164.6.2881. [DOI] [PubMed] [Google Scholar]
  27. Verschueren K., Remacle J.E., Collart C., Kraft H., Baker B.S., Tylzanowski P., Nelles L., Wuytens G., Su M.T., Bodmer R., Smith J., Huylebroeck D. SIP1,a novel zinc nger/homeodomain repressor,interacts with Smad proteins and binds to 5'-CACCT sequences in candidate target genes. J.Biol.Chem. 1999;274:20489–20498. doi: 10.1074/jbc.274.29.20489. [DOI] [PubMed] [Google Scholar]
  28. Weiner H.L. Oral tolerance: immune mechanisms and treatment of autoimmune diseases. Immunol.Today. 1997;18:335–343. doi: 10.1016/S0167-5699(97)01053-0. [DOI] [PubMed] [Google Scholar]
  29. Whitacre C.C., Gienapp I.E., Orosz C., Bitar D.M. Oral tolerance in experimental autoimmune encephalomyeli-tis.Evidence for clonal anergy. J.Immunol. 1991;147:2155–2163. [PubMed] [Google Scholar]
  30. Zhu M., Janssen E., Leung K., Zhang W. Molecular cloning of a novel gene encoding a membrane-associated adaptor protein (LAX)in lymphocyte signaling. J.Biol. Chem. 2002;277:46151–46158. doi: 10.1074/jbc.M208946200. [DOI] [PubMed] [Google Scholar]

Articles from Cytotechnology are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES