Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1980 Oct;32(1):225–228. doi: 10.1016/S0006-3495(80)84941-1

CHROMIUM (III)-NUCLEOTIDE COMPLEXES AS PARAMAGNETIC PROBES FOR CATALYTIC SITES OF PHOSPHORYL TRANSFER ENZYMES

Raj K Gupta
PMCID: PMC1327288  PMID: 19431363

Full text

PDF
225

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Danenberg K. D., Cleland W. W. Use of chromium-adenosine triphosphate and lyxose to elucidate the kinetic mechanism and coordination state of the nucleotide substrate for yeast hexokinase. Biochemistry. 1975 Jan 14;14(1):28–39. doi: 10.1021/bi00672a006. [DOI] [PubMed] [Google Scholar]
  2. Dunaway-Mariano D., Benovic J. L., Cleland W. W., Gupta R. K., Mildvan A. S. Stereospecificity of the metal--adenosine 5'-triphosphate complex in reactions of muscle pyruvate kinase. Biochemistry. 1979 Oct 2;18(20):4347–4354. doi: 10.1021/bi00587a013. [DOI] [PubMed] [Google Scholar]
  3. Gupta R. K. A novel nuclear relaxation approach for estimating distance between enzyme- and nucleotide-bound metal ions at the catalytic site of pyruvate kinase. J Biol Chem. 1977 Aug 10;252(15):5183–5185. [PubMed] [Google Scholar]
  4. Gupta R. K., Benovic J. L. Magnetic resonance and kinetic studies of the spatial arrangement of phosphoenolpyruvate and chromium (III)-adenosine diphosphate at the catalytic site of pyruvate kinase. J Biol Chem. 1978 Dec 25;253(24):8878–8896. [PubMed] [Google Scholar]
  5. Gupta R. K., Fung C. H., Mildvan A. S. Chromium(III)-adenosine triphosphate as a paramagnetic probe to determine intersubstrate distances on pyruvate kinase. Detection of an active enzyme-metal-ATP-metal complex. J Biol Chem. 1976 Apr 25;251(8):2421–2430. [PubMed] [Google Scholar]
  6. Gupta R. K., Mildvan A. S. Structures of enzyme-bound metal-nucleotide complexes in the phosphoryl transfer reaction of muscle pyruvate kinase. 31P NMR studies with magnesium and kinetic studies with chromium nucleotides. J Biol Chem. 1977 Sep 10;252(17):5967–5976. [PubMed] [Google Scholar]
  7. Gupta R. K., Oesterling R. M. Dual divalent cation requirement for activation of pyruvate kinase; essential roles of both enzyme- and nucleotide-bound metal ions. Biochemistry. 1976 Jun 29;15(13):2881–2887. doi: 10.1021/bi00658a028. [DOI] [PubMed] [Google Scholar]
  8. Mildvan A. S., Gupta R. K. Nuclear relaxation measurements of the geometry of enzyme-bound substrates and analogs. Methods Enzymol. 1978;49:322–359. doi: 10.1016/s0076-6879(78)49017-2. [DOI] [PubMed] [Google Scholar]
  9. Mildvan A. S., Sloan D. L., Fung C. H., Gupta R. K., Melamud E. Arrangement and conformations of substrates at the active site of pyruvate kinase from model building studies based on magnetic resonance data. J Biol Chem. 1976 Apr 25;251(8):2431–2434. [PubMed] [Google Scholar]
  10. Petersen R. L., Gupta B. K. Magnetic resonance studies of the spatial arrangement of glucose-6-phosphate and chromium (III)-adenosine diphosphate at the catalytic site of hexokinase. Biophys J. 1979 Jul;27(1):1–14. doi: 10.1016/S0006-3495(79)85198-X. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES