Abstract
Subgenomic mRNA from a virulent field isolate of porcine transmissible gastroenteritis virus (TGEV), strain FS772/70, was used to produce cDNA. The cDNA from three overlapping clones was sequenced by the chain termination method and two open reading frames (ORFs) were identified. The largest ORF, 4350bp, encoded a polypeptide of 1449 amino acids of relative molecular mass (Mr) 159811, which contained 33 potential N-linked glycosylation sites, a cysteine-rich region, and a potential transmembrane region. The C-terminal half of this ORF showed homology to the S proteins of four other coronaviruses. The other ORF consisted of the 3'-end of a gene with homology to the carboxyl terminus of the F2 subunit of infectious bronchitis virus (IBV) RNA polymerase.
Keywords: Transmissible gastroenteritis virus, Coronavirus, Spike, Porcine, cDNA
References
- Binns M.M., Boursnell M.E.G., Cavanagh D., Pappin D.J.C., Brown T.D.K. Cloning and sequencing of the gene encoding the spike protein of the coronavirus IBV. J. Gen. Virol. 1985;66:719–726. doi: 10.1099/0022-1317-66-4-719. [DOI] [PubMed] [Google Scholar]
- Boursnell M.E.G., Brown T.D.K., Foulds I.J., Green P.F., Tomley F.M., Binns M.M. Completion of the sequence of the genome of the coronavirus avian infectious bronchitis virus. J. Gen. Virol. 1987;68:57–77. doi: 10.1099/0022-1317-68-1-57. [DOI] [PubMed] [Google Scholar]
- Britton P., Garwes D.J., Page K., Walmsley J. Expression of porcine transmissible gastroenteritis virus genes in E. coli as β-galactosidase chimaeric proteins. In: Lai M.M.C., Stohlman S.A., editors. Coronaviruses. Vol. 218. Plenum Press; New York, London: 1987. pp. 55–64. (Adv. Exp. Med. Biol.). [DOI] [PubMed] [Google Scholar]
- Britton P., Carmenes R.S., Page K.W., Garwes D.J., Parra F. Sequence of the nucleoprotein from a virulent British field isolate of transmissible gastroenteritis virus and its expression in Saccharomyces cerevisiae. Mol. Microbiol. 1988;2:89–99. [PubMed] [Google Scholar]
- Britton P., Carmenes R.S., Page K.W., Garwes D.J. The integral membrane protein from a virulent isolate of transmissible gastroenteritis virus: molecular characterization, sequence and expression in Escherichia coli. Mol. Microbiol. 1988;2:497–505. doi: 10.1111/j.1365-2958.1988.tb00056.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Britton P., Lopez Otin C, Martin Alonso J.M., Parra F. Sequence of the coding regions from the 3.0 kb and 3.9 kb mRNA subgenomic species from a virulent isolate of transmissible gastroenteritis virus. Arch. Virol. 1989;105:165–178. doi: 10.1007/BF01311354. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cavanagh D. Coronavirus IBV: structural characterization of the spike protein. J. Gen. Virol. 1983;64:2577–2583. doi: 10.1099/0022-1317-64-12-2577. [DOI] [PubMed] [Google Scholar]
- Cavanagh D., Davis P.J. Coronavirus IBV: removal of spike glycopeptide S1 by urea abolishes infectivity and haemagglutination but not attachment to cells. J. Gen. Virol. 1986;67:1443–1448. doi: 10.1099/0022-1317-67-7-1443. [DOI] [PubMed] [Google Scholar]
- De Groot R.J., Maduro J., Lenstra J.A., Horzinek M.C., Van Der Zeijst B.A.M., Spaan W.J.M. cDNA cloning and sequence analysis of the gene encoding the peplomer protein of feline infectious peritonitis virus. J. Gen. Virol. 1987;68:2639–2646. doi: 10.1099/0022-1317-68-10-2639. [DOI] [PubMed] [Google Scholar]
- De Groot R.J., Andeweg A.C., Horzinek M.C., Spaan W.J.M. Sequence analysis of the 3' end of the feline coronavirus FIPV79–1146 genome: comparison with the genome of porcine coronavirus TGEV reveals large insertions. Virology. 1988;167:370–376. doi: 10.1016/0042-6822(88)90097-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Delmas B., Rasschaert D., Godet M., Gelfi J., Laude H. Four major antigenic sites of the coronavirus transmissible gastroenteritis virus are located on the amino-terminal half of spike glycoprotein S. J. Gen. Virol. 1990;71:1313–1323. doi: 10.1099/0022-1317-71-6-1313. [DOI] [PubMed] [Google Scholar]
- Eisenberg D., Schwarz E., Komaromy M., Wall R. Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J. Mol. Biol. 1984;179:125–142. doi: 10.1016/0022-2836(84)90309-7. [DOI] [PubMed] [Google Scholar]
- Garwes D.J., Lucas M.H., Higgins D.A., Pike B.V., Cartwright S.F. Antigenicity of structural components from porcine transmissible gastroenteritis virus. Vet. Microbiol. 1978/1979;3:179–190. [Google Scholar]
- Garwes D.J., Stewart F., Elleman C.J. Identification of epitopes of immunological importance on the peplomer of porcine transmissible gastroenteritis virus. In: Lai M.M.C., Stohlman S.A., editors. Vol. 218. Plenum Press; New York, London: 1987. pp. 509–515. (Coronaviruses. Adv. Exp. Med. Biol.). [DOI] [PubMed] [Google Scholar]
- Garwes G.J., Stewart F., Britton P. The polypeptide of Mr 14000 of porcine transmissible gastroenteritis virus: gene assignment and intracellular location. J. Gen. Virol. 1989;70:2495–2499. doi: 10.1099/0022-1317-70-9-2495. [DOI] [PubMed] [Google Scholar]
- Jacobs L., de Groot A., van der Zeijst B.A.M., Horzinek M.C., Spaan W. The nucleotide sequence of the peplomer gene of porcine transmissible gastroenteritis virus (TGEV): comparison with the sequence of the peplomer protein of feline infectious peritonitis virus (FIPV) Virus Res. 1987;8:363–371. doi: 10.1016/0168-1702(87)90008-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jimenez G., Correa I., Melgosa M.P., Bullido M.J., Enjuanes L. Critical epitopes in transmissible gastroenteritis virus neutralization. J. Virol. 1986;60:131–139. doi: 10.1128/jvi.60.1.131-139.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laude H., Chapsal J.-M, Gelfi J., Labiau S., Grosclaude J. Antigenic structure of transmissible gastroenteritis virus. I. Properties of monoclonal antibodies directed against virion proteins. J. Gen. Virol. 1986;67:119–130. doi: 10.1099/0022-1317-67-1-119. [DOI] [PubMed] [Google Scholar]
- Parker M.D., Yoo D., Cox G.J., Babiuk L.A. Primary structure of the S peplomer gene of bovine coronavirus and surface expression in insect cells. J. Gen. Virol. 1990;71:263–270. doi: 10.1099/0022-1317-71-2-263. [DOI] [PubMed] [Google Scholar]
- Posthumus W.P.A., Lenstra J.A., Schaaper W.M.M., van Nieuwstadt A.P., Enjuanes L., Meloen R.H. Analysis and simulation of a neutralizing epitope of transmissible gastroenteritis virus. J. Virol. 1990;64:3304–3309. doi: 10.1128/jvi.64.7.3304-3309.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raabe T., Schelle-Prinz B., Siddell S.G. Nucleotide sequence of the gene encoding the spike glycoprotein of human coronavirus HCV 229E. J. Gen. Virol. 1990;71:1065–1073. doi: 10.1099/0022-1317-71-5-1065. [DOI] [PubMed] [Google Scholar]
- Rasschaert D., Laude H. The predicted structure of the peplomer protein E2 of the porcine coronavirus transmissible gastroenteritis virus. J. Gen. Virol. 1987;68:1883–1890. doi: 10.1099/0022-1317-68-7-1883. [DOI] [PubMed] [Google Scholar]
- Schmidt I., Skinner M., Siddell S. Nucleotide sequence of the gene encoding the surface projection glycoprotein of coronavirus MHV-JHM. J. Gen. Virol. 1987;68:47–56. doi: 10.1099/0022-1317-68-1-47. [DOI] [PubMed] [Google Scholar]
- Schmidt M.F. Acylation of viral spike glycoproteins: a feature of enveloped RNA viruses. Virology. 1982;116:327–338. doi: 10.1016/0042-6822(82)90424-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Staden R. An interactive graphics program for comparing and aligning nucleic acid and amino acid sequences. Nucl. Acids Res. 1982;10:2951–2961. doi: 10.1093/nar/10.9.2951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- von Heijne G. A new method for predicting signal sequence cleavage sites. Nucl. Acids Res. 1986;14:4683–4690. doi: 10.1093/nar/14.11.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wesley R.D. Nucleotide sequence of the E2-peplomer protein gene and partial nucleotide sequence of the upstream polymerase gene of transmissible gastroenteritis virus (Miller strain) In: Cavanagh D., Brown T.D.K., editors. Coronaviruses and Their Diseases. Vol. 276. Plenum Press; New York and London: 1990. (Adv. Exp. Med. Biol.). (in press). [DOI] [PubMed] [Google Scholar]
