Abstract
The present experiments were undertaken to examine the hypothesis that glucose-induced increased de novo synthesis of 1,2-diacyl-sn-glycerol (which has been observed in a number of different tissues, including retinal capillary endothelial cells exposed to elevated glucose levels in vitro) and associated activation of protein kinase C may play a role in mediating glucose-induced vascular functional changes. We report here that twice daily instillation of 30 mM glucose over 10 d in a rat skin chamber granulation tissue model induces approximately a 2.7-fold increase in diacylglycerol (DAG) levels (versus tissues exposed to 5 mM glucose) in association with marked increases in vascular clearance of albumin and blood flow. The glucose-induced increase in DAG levels as well as the vascular functional changes are prevented by addition of 3 mM pyruvate. Pharmacological activation of protein kinase C with the phorbol ester TPA in the presence of 5 mM glucose increases microvascular albumin clearance and blood flow, and similar effects are observed with 1-monoolein (MOG), a pharmacological inhibitor of the catabolism of endogenous DAG. A pharmacological inhibitor of protein kinase C (staurosporine) greatly attenuates the rise in microvascular albumin clearance (but not the rise in blood flow) induced by glucose or by MOG. These findings are compatible with the hypothesis that elevated concentrations of glucose increase tissue DAG content via de novo synthesis, resulting in protein kinase C activation, and that these biochemical events are among the factors that generate the increased microvascular albumin clearance.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bertorello A., Aperia A. Na+-K+-ATPase is an effector protein for protein kinase C in renal proximal tubule cells. Am J Physiol. 1989 Feb;256(2 Pt 2):F370–F373. doi: 10.1152/ajprenal.1989.256.2.F370. [DOI] [PubMed] [Google Scholar]
- Bishop W. R., Bell R. M. Attenuation of sn-1,2-diacylglycerol second messengers. Metabolism of exogenous diacylglycerols by human platelets. J Biol Chem. 1986 Sep 25;261(27):12513–12519. [PubMed] [Google Scholar]
- Burch R. M., Ma A. L., Axelrod J. Phorbol esters and diacylglycerols amplify bradykinin-stimulated prostaglandin synthesis in Swiss 3T3 fibroblasts. Possible independence from protein kinase C. J Biol Chem. 1988 Apr 5;263(10):4764–4767. [PubMed] [Google Scholar]
- Craven P. A., DeRubertis F. R. Protein kinase C is activated in glomeruli from streptozotocin diabetic rats. Possible mediation by glucose. J Clin Invest. 1989 May;83(5):1667–1675. doi: 10.1172/JCI114066. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Boeck H., Zidovetzki R. Effects of diacylglycerols on the structure of phosphatidylcholine bilayers: a 2H and 31P NMR study. Biochemistry. 1989 Sep 5;28(18):7439–7446. doi: 10.1021/bi00444a043. [DOI] [PubMed] [Google Scholar]
- Dunlop M. E., Larkins R. G. Pancreatic islets synthesize phospholipids de novo from glucose via acyl-dihydroxyacetone phosphate. Biochem Biophys Res Commun. 1985 Oct 30;132(2):467–473. doi: 10.1016/0006-291x(85)91157-x. [DOI] [PubMed] [Google Scholar]
- Eades D. M., Williamson J. R., Sherman W. R. Rapid analysis of sorbitol, galactitol, mannitol and myoinositol mixtures from biological sources. J Chromatogr. 1989 May 5;490(1):1–8. doi: 10.1016/s0378-4347(00)82755-3. [DOI] [PubMed] [Google Scholar]
- Easom R. A., Hughes J. H., Landt M., Wolf B. A., Turk J., McDaniel M. L. Comparison of effects of phorbol esters and glucose on protein kinase C activation and insulin secretion in pancreatic islets. Biochem J. 1989 Nov 15;264(1):27–33. doi: 10.1042/bj2640027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ebanks R., Roifman C., Mellors A., Mills G. B. The diacylglycerol analogue, 1,2-sn-dioctanoylglycerol, induces an increase in cytosolic free Ca2+ and cytosolic acidification of T lymphocytes through a protein kinase C-independent process. Biochem J. 1989 Mar 15;258(3):689–698. doi: 10.1042/bj2580689. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Epand R. M. Diacylglycerols, lysolecithin, or hydrocarbons markedly alter the bilayer to hexagonal phase transition temperature of phosphatidylethanolamines. Biochemistry. 1985 Dec 3;24(25):7092–7095. doi: 10.1021/bi00346a011. [DOI] [PubMed] [Google Scholar]
- Farese R. V., Cooper D. R., Konda T. S., Nair G., Standaert M. L., Davis J. S., Pollet R. J. Mechanisms whereby insulin increases diacylglycerol in BC3H-1 myocytes. Biochem J. 1988 Nov 15;256(1):175–184. doi: 10.1042/bj2560175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greene D. A., Lattimer S. A., Sima A. A. Pathogenesis and prevention of diabetic neuropathy. Diabetes Metab Rev. 1988 May;4(3):201–221. doi: 10.1002/dmr.5610040303. [DOI] [PubMed] [Google Scholar]
- Kikkawa U., Kishimoto A., Nishizuka Y. The protein kinase C family: heterogeneity and its implications. Annu Rev Biochem. 1989;58:31–44. doi: 10.1146/annurev.bi.58.070189.000335. [DOI] [PubMed] [Google Scholar]
- Kilzer P., Chang K., Marvel J., Rowold E., Jaudes P., Ullensvang S., Kilo C., Williamson J. R. Albumin permeation of new vessels is increased in diabetic rats. Diabetes. 1985 Apr;34(4):333–336. doi: 10.2337/diab.34.4.333. [DOI] [PubMed] [Google Scholar]
- Kolesnick R. N. 1,2-Diacylglycerols but not phorbol esters stimulate sphingomyelin hydrolysis in GH3 pituitary cells. J Biol Chem. 1987 Dec 15;262(35):16759–16762. [PubMed] [Google Scholar]
- Lattimer S. A., Sima A. A., Greene D. A. In vitro correction of impaired Na+-K+-ATPase in diabetic nerve by protein kinase C agonists. Am J Physiol. 1989 Feb;256(2 Pt 1):E264–E269. doi: 10.1152/ajpendo.1989.256.2.E264. [DOI] [PubMed] [Google Scholar]
- Lee T. S., MacGregor L. C., Fluharty S. J., King G. L. Differential regulation of protein kinase C and (Na,K)-adenosine triphosphatase activities by elevated glucose levels in retinal capillary endothelial cells. J Clin Invest. 1989 Jan;83(1):90–94. doi: 10.1172/JCI113889. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
- Lee T. S., Saltsman K. A., Ohashi H., King G. L. Activation of protein kinase C by elevation of glucose concentration: proposal for a mechanism in the development of diabetic vascular complications. Proc Natl Acad Sci U S A. 1989 Jul;86(13):5141–5145. doi: 10.1073/pnas.86.13.5141. [DOI] [PMC free article] [PubMed] [Google Scholar] [Research Misconduct Found]
- Liscovitch M., Slack B., Blusztajn J. K., Wurtman R. J. Differential regulation of phosphatidylcholine biosynthesis by 12-O-tetradecanoylphorbol-13-acetate and diacylglycerol in NG108-15 neuroblastoma x glioma hybrid cells. J Biol Chem. 1987 Dec 25;262(36):17487–17491. [PubMed] [Google Scholar]
- Lou M. F., Dickerson J. E., Jr, Garadi R., York B. M., Jr Glutathione depletion in the lens of galactosemic and diabetic rats. Exp Eye Res. 1988 Apr;46(4):517–530. doi: 10.1016/s0014-4835(88)80009-5. [DOI] [PubMed] [Google Scholar]
- Lundberg C., Gerdin B. The inflammatory reaction in an experimental model of open wounds in the rat. The effect of arachidonic acid metabolites. Eur J Pharmacol. 1984 Jan 27;97(3-4):229–238. doi: 10.1016/0014-2999(84)90454-0. [DOI] [PubMed] [Google Scholar]
- Lynch J. J., Ferro T. J., Blumenstock F. A., Brockenauer A. M., Malik A. B. Increased endothelial albumin permeability mediated by protein kinase C activation. J Clin Invest. 1990 Jun;85(6):1991–1998. doi: 10.1172/JCI114663. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marano C. W., Matschinsky F. M. Biochemical manifestations of diabetes mellitus in microscopic layers of the cornea and retina. Diabetes Metab Rev. 1989 Feb;5(1):1–15. doi: 10.1002/dmr.5610050102. [DOI] [PubMed] [Google Scholar]
- Murtiashaw M. H., Baynes J. W., Thorpe S. R. Albumin catabolism in diabetic rats. Arch Biochem Biophys. 1983 Aug;225(1):256–262. doi: 10.1016/0003-9861(83)90028-0. [DOI] [PubMed] [Google Scholar]
- Okumura K., Akiyama N., Hashimoto H., Ogawa K., Satake T. Alteration of 1,2-diacylglycerol content in myocardium from diabetic rats. Diabetes. 1988 Sep;37(9):1168–1172. doi: 10.2337/diab.37.9.1168. [DOI] [PubMed] [Google Scholar]
- Peter-Riesch B., Fathi M., Schlegel W., Wollheim C. B. Glucose and carbachol generate 1,2-diacylglycerols by different mechanisms in pancreatic islets. J Clin Invest. 1988 Apr;81(4):1154–1161. doi: 10.1172/JCI113430. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Preiss J. E., Loomis C. R., Bell R. M., Niedel J. E. Quantitative measurement of sn-1,2-diacylglycerols. Methods Enzymol. 1987;141:294–300. doi: 10.1016/0076-6879(87)41077-x. [DOI] [PubMed] [Google Scholar]
- Rüstow B., Nakagawa Y., Rabe H., Reichmann G., Kunze D., Waku K. Comparison of the HPLC-separated species patterns of phosphatidic acid, CDP-diacylglycerol and diacylglycerol synthesized de novo in rat liver microsomes (a new method). Biochim Biophys Acta. 1988 Aug 12;961(3):364–369. doi: 10.1016/0005-2760(88)90083-5. [DOI] [PubMed] [Google Scholar]
- Simpson C. M., Hawthorne J. N. Reduced Na+ + K+-ATPase activity in peripheral nerve of streptozotocin-diabetic rats: a role for protein kinase C? Diabetologia. 1988 May;31(5):297–303. doi: 10.1007/BF00277411. [DOI] [PubMed] [Google Scholar]
- Smart J. L., Deth R. C. Influence of alpha 1-adrenergic receptor stimulation and phorbol esters on hepatic Na+/K+-ATPase activity. Pharmacology. 1988;37(2):94–104. doi: 10.1159/000138452. [DOI] [PubMed] [Google Scholar]
- Smith C. D., Glickman J. F., Chang K. J. The antiproliferative effects of staurosporine are not exclusively mediated by inhibition of protein kinase C. Biochem Biophys Res Commun. 1988 Nov 15;156(3):1250–1256. doi: 10.1016/s0006-291x(88)80767-8. [DOI] [PubMed] [Google Scholar]
- Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
- Tamaoki T., Nomoto H., Takahashi I., Kato Y., Morimoto M., Tomita F. Staurosporine, a potent inhibitor of phospholipid/Ca++dependent protein kinase. Biochem Biophys Res Commun. 1986 Mar 13;135(2):397–402. doi: 10.1016/0006-291x(86)90008-2. [DOI] [PubMed] [Google Scholar]
- Tilton R. G., Chang K., Pugliese G., Eades D. M., Province M. A., Sherman W. R., Kilo C., Williamson J. R. Prevention of hemodynamic and vascular albumin filtration changes in diabetic rats by aldose reductase inhibitors. Diabetes. 1989 Oct;38(10):1258–1270. doi: 10.2337/diab.38.10.1258. [DOI] [PubMed] [Google Scholar]
- Tilton R. G., Pugliese G., Chang K., Speedy A., Province M. A., Kilo C., Williamson J. R. Effects of hypothyroidism on vascular 125I-albumin permeation and blood flow in rats. Metabolism. 1989 May;38(5):471–478. doi: 10.1016/0026-0495(89)90201-1. [DOI] [PubMed] [Google Scholar]
- Travis S. F., Morrison A. D., Clements R. S., Jr, Winegrad A. I., Oski F. A. Metabolic alterations in the human erythrocyte produced by increases in glucose concentration. The role of the polyol pathway. J Clin Invest. 1971 Oct;50(10):2104–2112. doi: 10.1172/JCI106704. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williamson J. R., Chang K., Tilton R. G., Prater C., Jeffrey J. R., Weigel C., Sherman W. R., Eades D. M., Kilo C. Increased vascular permeability in spontaneously diabetic BB/W rats and in rats with mild versus severe streptozocin-induced diabetes. Prevention by aldose reductase inhibitors and castration. Diabetes. 1987 Jul;36(7):813–821. doi: 10.2337/diab.36.7.813. [DOI] [PubMed] [Google Scholar]
- Williamson J. R., Holmberg S. W., Chang K., Marvel J., Sutera S. P., Needleman P. Mechanisms underlying atriopeptin-induced increases in hematocrit and vascular permeation in rats. Circ Res. 1989 May;64(5):890–899. doi: 10.1161/01.res.64.5.890. [DOI] [PubMed] [Google Scholar]
- Williamson J. R., Ostrow E., Eades D., Chang K., Allison W., Kilo C., Sherman W. R. Glucose-induced microvascular functional changes in nondiabetic rats are stereospecific and are prevented by an aldose reductase inhibitor. J Clin Invest. 1990 Apr;85(4):1167–1172. doi: 10.1172/JCI114549. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williamson J. R., Tilton R. G., Chang K., Kilo C. Basement membrane abnormalities in diabetes mellitus: relationship to clinical microangiopathy. Diabetes Metab Rev. 1988 Jun;4(4):339–370. doi: 10.1002/dmr.5610040404. [DOI] [PubMed] [Google Scholar]
- Winegrad A. I. Banting lecture 1986. Does a common mechanism induce the diverse complications of diabetes? Diabetes. 1987 Mar;36(3):396–406. doi: 10.2337/diab.36.3.396. [DOI] [PubMed] [Google Scholar]
- Wolf B. A., Easom R. A., Hughes J. H., McDaniel M. L., Turk J. Secretagogue-induced diacylglycerol accumulation in isolated pancreatic islets. Mass spectrometric characterization of the fatty acyl content indicates multiple mechanisms of generation. Biochemistry. 1989 May 16;28(10):4291–4301. doi: 10.1021/bi00436a026. [DOI] [PubMed] [Google Scholar]
- Wolf B. A., Easom R. A., McDaniel M. L., Turk J. Diacylglycerol synthesis de novo from glucose by pancreatic islets isolated from rats and humans. J Clin Invest. 1990 Feb;85(2):482–490. doi: 10.1172/JCI114463. [DOI] [PMC free article] [PubMed] [Google Scholar]
