Abstract
We describe the effects of methylenecyclopropylglycine in fasted rats. A 75% decrease in the blood glucose concentration and an increase of lactate and pyruvate were observed 6 h after administration of 100 mg of this amino acid/kg. By contrast with the effects reported for hypoglycin [Williamson & Wilson (1965) Biochem. J. 94, 19c-21c], the plasma concentrations of ketone bodies decreased after administration of methylenecyclopropylglycine and the concentrations of branched-chain amino acids in the plasma were increased 6-fold. The oxidation of decanoylcarnitine or of palmitate was nearly completely inhibited in rat liver mitochondria from methylenecyclopropylglycine-poisoned rats. The activities of acetoacetyl-CoA and of 3-oxoacyl-CoA thiolase were decreased to 25% and less than 10% of the controls. There was a pronounced aciduria, due to the excretion of dicarboxylic acids and of oxidation products of branched-chain amino acids. The accumulation of the toxic metabolite methylenecyclopropylformyl-CoA in the mitochondrial matrix was detected after administration of methylenecyclopropylglycine. Similarly we confirmed experimentally that methylenecyclopropylacetyl-CoA accumulates in mitochondria incubated with methylenecyclopropylpyruvate.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Billington D., Osmundsen H., Sherratt H. S. Mechanisms of the metabolic disturbances caused by hypoglycin and by pent-4-enoic acid. In vitro studies. Biochem Pharmacol. 1978;27(24):2879–2890. doi: 10.1016/0006-2952(78)90204-6. [DOI] [PubMed] [Google Scholar]
- Billington D., Osmundsen H., Sherratt H. S. Mechanisms of the metabolic disturbances caused by hypoglycin and by pent-4-enoic acid. In vivo studies. Biochem Pharmacol. 1978;27(24):2891–2900. doi: 10.1016/0006-2952(78)90205-8. [DOI] [PubMed] [Google Scholar]
- Causey A. G., Middleton B., Bartlett K. A study of the metabolism of [U-14C]3-methyl-2-oxopentanoate by rat liver mitochondria using h.p.l.c. with continuous on-line monitoring of radioactive intact acyl-coenzyme A intermediates. Biochem J. 1986 Apr 15;235(2):343–350. doi: 10.1042/bj2350343. [DOI] [PMC free article] [PubMed] [Google Scholar]
- El-Fakhri M., Middleton B. The existence of an inner-membrane-bound, long acyl-chain-specific 3-hydroxyacyl-CoA dehydrogenase in mammalian mitochondria. Biochim Biophys Acta. 1982 Nov 12;713(2):270–279. doi: 10.1016/0005-2760(82)90244-2. [DOI] [PubMed] [Google Scholar]
- GRAY D. O., FOWDEN L. alpha-(Methylenecyclopropyl)glycine from Litchi seeds. Biochem J. 1962 Mar;82:385–389. doi: 10.1042/bj0820385. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ghisla S., Melde K., Zeller H. D., Boschert W. Mechanisms of enzyme inhibition by hypoglycin, methylenecyclopropylglycine and their metabolites. Prog Clin Biol Res. 1990;321:185–192. [PubMed] [Google Scholar]
- Goodman S. I., Valle D. Defective imino acid metabolism in hypoglycin-treated rats. Biochem Med. 1984 Feb;31(1):97–103. doi: 10.1016/0006-2944(84)90064-4. [DOI] [PubMed] [Google Scholar]
- Hine D. G., Tanaka K. Capillary gas chromatographic/mass spectrometric analysis of abnormal metabolites in hypoglycin-treated rat urine. Biomed Mass Spectrom. 1984 Jul;11(7):332–339. doi: 10.1002/bms.1200110704. [DOI] [PubMed] [Google Scholar]
- Holland P. C., Sherratt H. S. Biochemical effects of the hypoglycaemic compound pent-4-enoic acid and related non-hypoglycaemic fatty acids. Effects of the free acids and their carnitine esters on coenzyme A-dependent oxidations in rat liver mitochondria. Biochem J. 1973 Sep;136(1):157–171. doi: 10.1042/bj1360157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kido R. Pancreatic branched-chain-amino-acid aminotransferase. Methods Enzymol. 1988;166:275–281. doi: 10.1016/s0076-6879(88)66037-x. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- LYNEN F., OCHOA S. Enzymes of fatty acid metabolism. Biochim Biophys Acta. 1953 Sep-Oct;12(1-2):299–314. doi: 10.1016/0006-3002(53)90149-8. [DOI] [PubMed] [Google Scholar]
- Lloyd B., Burrin J., Smythe P., Alberti K. G. Enzymic fluorometric continuous-flow assays for blood glucose, lactate, pyruvate, alanine, glycerol, and 3-hydroxybutyrate. Clin Chem. 1978 Oct;24(10):1724–1729. [PubMed] [Google Scholar]
- Melde K., Buettner H., Boschert W., Wolf H. P., Ghisla S. Mechanism of hypoglycaemic action of methylenecyclopropylglycine. Biochem J. 1989 May 1;259(3):921–924. doi: 10.1042/bj2590921. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miyazawa S., Osumi T., Hashimoto T. The presence of a new 3-oxoacyl-CoA thiolase in rat liver peroxisomes. Eur J Biochem. 1980 Feb;103(3):589–596. doi: 10.1111/j.1432-1033.1980.tb05984.x. [DOI] [PubMed] [Google Scholar]
- Olowe Y., Schulz H. 4-Bromocrotonic acid, an effective inhibitor of fatty acid oxidation and ketone body degradation in rat heart mitochondria. On the rate-determining step of beta-oxidation and ketone body degradation in heart. J Biol Chem. 1982 May 25;257(10):5408–5413. [PubMed] [Google Scholar]
- Osmundsen H., Billington D., Taylor J. R., Sherratt H. S. The effects of hypoglycin on glucose metabolism in the rat. A kinetic study in vivo and [U-14C,2-3H]glucose. Biochem J. 1978 Feb 15;170(2):337–342. doi: 10.1042/bj1700337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Osmundsen H., Sherratt H. S. A novel mechanism for inhibition of beta-oxidation by methylenecyclopropylacetyl-CoA, a metabolite of hypoglycin. FEBS Lett. 1975 Jul 15;55(1):38–41. doi: 10.1016/0014-5793(75)80951-3. [DOI] [PubMed] [Google Scholar]
- PATRICK S. J. A general method for the determination of transaminase activity. Effects of hypoglycin A. Can J Biochem Physiol. 1963 May;41:1163–1167. [PubMed] [Google Scholar]
- Pourfarzam M., Bartlett K. Products and intermediates of the beta-oxidation of [U-14C]hexadecanedionoyl-mono-CoA by rat liver peroxisomes and mitochondria. Biochem J. 1991 Jan 1;273(Pt 1):205–210. doi: 10.1042/bj2730205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RANDLE P. J., GARLAND P. B., HALES C. N., NEWSHOLME E. A. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963 Apr 13;1(7285):785–789. doi: 10.1016/s0140-6736(63)91500-9. [DOI] [PubMed] [Google Scholar]
- Raaka B. M., Lowenstein J. M. 2-Bromooctanoate. Methods Enzymol. 1981;72:559–577. doi: 10.1016/s0076-6879(81)72044-5. [DOI] [PubMed] [Google Scholar]
- Rüdiger H. W., Langenbeck U., Goedde H. W. A simplified method for the preparation of 14 C-labelled branched-chain -oxo acids. Biochem J. 1972 Jan;126(2):445–446. doi: 10.1042/bj1260445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schulz H., Fong J. C. 4-Pentenoic acid. Methods Enzymol. 1981;72:604–610. doi: 10.1016/s0076-6879(81)72050-0. [DOI] [PubMed] [Google Scholar]
- Schulz H., Staack H. 3-Ketoacyl-CoA-thiolase with broad chain length specificity from pig heart muscle. Methods Enzymol. 1981;71(Pt 100):398–403. doi: 10.1016/0076-6879(81)71050-4. [DOI] [PubMed] [Google Scholar]
- Stanley H., Sherratt A., Osmundsen H. On the mechanisms of some pharmacological actions of the hypoglycaemic toxins hypoglycin and pent-4-enoic acid. A way out of the present confusion. Biochem Pharmacol. 1976 Apr 1;25(7):743–750. doi: 10.1016/0006-2952(76)90139-8. [DOI] [PubMed] [Google Scholar]
- Tanaka K., Ikeda Y. Hypoglycin and Jamaican vomiting sickness. Prog Clin Biol Res. 1990;321:167–184. [PubMed] [Google Scholar]
- Vamecq J., Draye J. P. Pathophysiology of peroxisomal beta-oxidation. Essays Biochem. 1989;24:115–225. [PubMed] [Google Scholar]
- Van Hoof F., Hue L., Vamecq J., Sherratt H. S. Protection of rats by clofibrate against the hypoglycaemic and toxic effects of hypoglycin and pent-4-enoate. An ultrastructural and biochemical study. Biochem J. 1985 Jul 15;229(2):387–397. doi: 10.1042/bj2290387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Veitch R. K., Sherratt H. S., Bartlett K. Organic aciduria in rats made resistant to hypoglycin toxicity by pretreatment with clofibrate. Biochem J. 1987 Sep 15;246(3):775–778. doi: 10.1042/bj2460775. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Von Holt C. Methylenecyclopropaneacetic acid, a metabolite of hypoglycin. Biochim Biophys Acta. 1966 Aug 3;125(1):1–10. doi: 10.1016/0005-2760(66)90138-x. [DOI] [PubMed] [Google Scholar]
- Von Holt C., Von Holt M., Böhm H. Metabolic effects of hypoglycin and methylenecyclopropaneacetic acid. Biochim Biophys Acta. 1966 Aug 3;125(1):11–21. doi: 10.1016/0005-2760(66)90139-1. [DOI] [PubMed] [Google Scholar]
- Waterson R. M., Conway R. S. Enoyl-CoA hydratases from Clostridium acetobutylicum and Escherichia coli. Methods Enzymol. 1981;71(Pt 100):421–430. doi: 10.1016/0076-6879(81)71053-x. [DOI] [PubMed] [Google Scholar]
- Watmough N. J., Turnbull D. M., Sherratt H. S., Bartlett K. Measurement of the acyl-CoA intermediates of beta-oxidation by h.p.l.c. with on-line radiochemical and photodiode-array detection. Application to the study of [U-14C]hexadecanoate oxidation by intact rat liver mitochondria. Biochem J. 1989 Aug 15;262(1):261–269. doi: 10.1042/bj2620261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wenz A., Thorpe C., Ghisla S. Inactivation of general acyl-CoA dehydrogenase from pig kidney by a metabolite of hypoglycin A. J Biol Chem. 1981 Oct 10;256(19):9809–9812. [PubMed] [Google Scholar]
- Yardley H. J., Godfrey G. Some in vitro effects of hypoglycin on skin. Arch Dermatol. 1967 Jul;96(1):89–93. [PubMed] [Google Scholar]
