Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1991 Mar 1;274(Pt 2):395–400. doi: 10.1042/bj2740395

Metabolic consequences of methylenecyclopropylglycine poisoning in rats.

K Melde 1, S Jackson 1, K Bartlett 1, H S Sherratt 1, S Ghisla 1
PMCID: PMC1150150  PMID: 2006907

Abstract

We describe the effects of methylenecyclopropylglycine in fasted rats. A 75% decrease in the blood glucose concentration and an increase of lactate and pyruvate were observed 6 h after administration of 100 mg of this amino acid/kg. By contrast with the effects reported for hypoglycin [Williamson & Wilson (1965) Biochem. J. 94, 19c-21c], the plasma concentrations of ketone bodies decreased after administration of methylenecyclopropylglycine and the concentrations of branched-chain amino acids in the plasma were increased 6-fold. The oxidation of decanoylcarnitine or of palmitate was nearly completely inhibited in rat liver mitochondria from methylenecyclopropylglycine-poisoned rats. The activities of acetoacetyl-CoA and of 3-oxoacyl-CoA thiolase were decreased to 25% and less than 10% of the controls. There was a pronounced aciduria, due to the excretion of dicarboxylic acids and of oxidation products of branched-chain amino acids. The accumulation of the toxic metabolite methylenecyclopropylformyl-CoA in the mitochondrial matrix was detected after administration of methylenecyclopropylglycine. Similarly we confirmed experimentally that methylenecyclopropylacetyl-CoA accumulates in mitochondria incubated with methylenecyclopropylpyruvate.

Full text

PDF
395

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Billington D., Osmundsen H., Sherratt H. S. Mechanisms of the metabolic disturbances caused by hypoglycin and by pent-4-enoic acid. In vitro studies. Biochem Pharmacol. 1978;27(24):2879–2890. doi: 10.1016/0006-2952(78)90204-6. [DOI] [PubMed] [Google Scholar]
  2. Billington D., Osmundsen H., Sherratt H. S. Mechanisms of the metabolic disturbances caused by hypoglycin and by pent-4-enoic acid. In vivo studies. Biochem Pharmacol. 1978;27(24):2891–2900. doi: 10.1016/0006-2952(78)90205-8. [DOI] [PubMed] [Google Scholar]
  3. Causey A. G., Middleton B., Bartlett K. A study of the metabolism of [U-14C]3-methyl-2-oxopentanoate by rat liver mitochondria using h.p.l.c. with continuous on-line monitoring of radioactive intact acyl-coenzyme A intermediates. Biochem J. 1986 Apr 15;235(2):343–350. doi: 10.1042/bj2350343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. El-Fakhri M., Middleton B. The existence of an inner-membrane-bound, long acyl-chain-specific 3-hydroxyacyl-CoA dehydrogenase in mammalian mitochondria. Biochim Biophys Acta. 1982 Nov 12;713(2):270–279. doi: 10.1016/0005-2760(82)90244-2. [DOI] [PubMed] [Google Scholar]
  5. GRAY D. O., FOWDEN L. alpha-(Methylenecyclopropyl)glycine from Litchi seeds. Biochem J. 1962 Mar;82:385–389. doi: 10.1042/bj0820385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ghisla S., Melde K., Zeller H. D., Boschert W. Mechanisms of enzyme inhibition by hypoglycin, methylenecyclopropylglycine and their metabolites. Prog Clin Biol Res. 1990;321:185–192. [PubMed] [Google Scholar]
  7. Goodman S. I., Valle D. Defective imino acid metabolism in hypoglycin-treated rats. Biochem Med. 1984 Feb;31(1):97–103. doi: 10.1016/0006-2944(84)90064-4. [DOI] [PubMed] [Google Scholar]
  8. Hine D. G., Tanaka K. Capillary gas chromatographic/mass spectrometric analysis of abnormal metabolites in hypoglycin-treated rat urine. Biomed Mass Spectrom. 1984 Jul;11(7):332–339. doi: 10.1002/bms.1200110704. [DOI] [PubMed] [Google Scholar]
  9. Holland P. C., Sherratt H. S. Biochemical effects of the hypoglycaemic compound pent-4-enoic acid and related non-hypoglycaemic fatty acids. Effects of the free acids and their carnitine esters on coenzyme A-dependent oxidations in rat liver mitochondria. Biochem J. 1973 Sep;136(1):157–171. doi: 10.1042/bj1360157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kido R. Pancreatic branched-chain-amino-acid aminotransferase. Methods Enzymol. 1988;166:275–281. doi: 10.1016/s0076-6879(88)66037-x. [DOI] [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. LYNEN F., OCHOA S. Enzymes of fatty acid metabolism. Biochim Biophys Acta. 1953 Sep-Oct;12(1-2):299–314. doi: 10.1016/0006-3002(53)90149-8. [DOI] [PubMed] [Google Scholar]
  13. Lloyd B., Burrin J., Smythe P., Alberti K. G. Enzymic fluorometric continuous-flow assays for blood glucose, lactate, pyruvate, alanine, glycerol, and 3-hydroxybutyrate. Clin Chem. 1978 Oct;24(10):1724–1729. [PubMed] [Google Scholar]
  14. Melde K., Buettner H., Boschert W., Wolf H. P., Ghisla S. Mechanism of hypoglycaemic action of methylenecyclopropylglycine. Biochem J. 1989 May 1;259(3):921–924. doi: 10.1042/bj2590921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Miyazawa S., Osumi T., Hashimoto T. The presence of a new 3-oxoacyl-CoA thiolase in rat liver peroxisomes. Eur J Biochem. 1980 Feb;103(3):589–596. doi: 10.1111/j.1432-1033.1980.tb05984.x. [DOI] [PubMed] [Google Scholar]
  16. Olowe Y., Schulz H. 4-Bromocrotonic acid, an effective inhibitor of fatty acid oxidation and ketone body degradation in rat heart mitochondria. On the rate-determining step of beta-oxidation and ketone body degradation in heart. J Biol Chem. 1982 May 25;257(10):5408–5413. [PubMed] [Google Scholar]
  17. Osmundsen H., Billington D., Taylor J. R., Sherratt H. S. The effects of hypoglycin on glucose metabolism in the rat. A kinetic study in vivo and [U-14C,2-3H]glucose. Biochem J. 1978 Feb 15;170(2):337–342. doi: 10.1042/bj1700337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Osmundsen H., Sherratt H. S. A novel mechanism for inhibition of beta-oxidation by methylenecyclopropylacetyl-CoA, a metabolite of hypoglycin. FEBS Lett. 1975 Jul 15;55(1):38–41. doi: 10.1016/0014-5793(75)80951-3. [DOI] [PubMed] [Google Scholar]
  19. PATRICK S. J. A general method for the determination of transaminase activity. Effects of hypoglycin A. Can J Biochem Physiol. 1963 May;41:1163–1167. [PubMed] [Google Scholar]
  20. Pourfarzam M., Bartlett K. Products and intermediates of the beta-oxidation of [U-14C]hexadecanedionoyl-mono-CoA by rat liver peroxisomes and mitochondria. Biochem J. 1991 Jan 1;273(Pt 1):205–210. doi: 10.1042/bj2730205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. RANDLE P. J., GARLAND P. B., HALES C. N., NEWSHOLME E. A. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963 Apr 13;1(7285):785–789. doi: 10.1016/s0140-6736(63)91500-9. [DOI] [PubMed] [Google Scholar]
  22. Raaka B. M., Lowenstein J. M. 2-Bromooctanoate. Methods Enzymol. 1981;72:559–577. doi: 10.1016/s0076-6879(81)72044-5. [DOI] [PubMed] [Google Scholar]
  23. Rüdiger H. W., Langenbeck U., Goedde H. W. A simplified method for the preparation of 14 C-labelled branched-chain -oxo acids. Biochem J. 1972 Jan;126(2):445–446. doi: 10.1042/bj1260445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schulz H., Fong J. C. 4-Pentenoic acid. Methods Enzymol. 1981;72:604–610. doi: 10.1016/s0076-6879(81)72050-0. [DOI] [PubMed] [Google Scholar]
  25. Schulz H., Staack H. 3-Ketoacyl-CoA-thiolase with broad chain length specificity from pig heart muscle. Methods Enzymol. 1981;71(Pt 100):398–403. doi: 10.1016/0076-6879(81)71050-4. [DOI] [PubMed] [Google Scholar]
  26. Stanley H., Sherratt A., Osmundsen H. On the mechanisms of some pharmacological actions of the hypoglycaemic toxins hypoglycin and pent-4-enoic acid. A way out of the present confusion. Biochem Pharmacol. 1976 Apr 1;25(7):743–750. doi: 10.1016/0006-2952(76)90139-8. [DOI] [PubMed] [Google Scholar]
  27. Tanaka K., Ikeda Y. Hypoglycin and Jamaican vomiting sickness. Prog Clin Biol Res. 1990;321:167–184. [PubMed] [Google Scholar]
  28. Vamecq J., Draye J. P. Pathophysiology of peroxisomal beta-oxidation. Essays Biochem. 1989;24:115–225. [PubMed] [Google Scholar]
  29. Van Hoof F., Hue L., Vamecq J., Sherratt H. S. Protection of rats by clofibrate against the hypoglycaemic and toxic effects of hypoglycin and pent-4-enoate. An ultrastructural and biochemical study. Biochem J. 1985 Jul 15;229(2):387–397. doi: 10.1042/bj2290387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Veitch R. K., Sherratt H. S., Bartlett K. Organic aciduria in rats made resistant to hypoglycin toxicity by pretreatment with clofibrate. Biochem J. 1987 Sep 15;246(3):775–778. doi: 10.1042/bj2460775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Von Holt C. Methylenecyclopropaneacetic acid, a metabolite of hypoglycin. Biochim Biophys Acta. 1966 Aug 3;125(1):1–10. doi: 10.1016/0005-2760(66)90138-x. [DOI] [PubMed] [Google Scholar]
  32. Von Holt C., Von Holt M., Böhm H. Metabolic effects of hypoglycin and methylenecyclopropaneacetic acid. Biochim Biophys Acta. 1966 Aug 3;125(1):11–21. doi: 10.1016/0005-2760(66)90139-1. [DOI] [PubMed] [Google Scholar]
  33. Waterson R. M., Conway R. S. Enoyl-CoA hydratases from Clostridium acetobutylicum and Escherichia coli. Methods Enzymol. 1981;71(Pt 100):421–430. doi: 10.1016/0076-6879(81)71053-x. [DOI] [PubMed] [Google Scholar]
  34. Watmough N. J., Turnbull D. M., Sherratt H. S., Bartlett K. Measurement of the acyl-CoA intermediates of beta-oxidation by h.p.l.c. with on-line radiochemical and photodiode-array detection. Application to the study of [U-14C]hexadecanoate oxidation by intact rat liver mitochondria. Biochem J. 1989 Aug 15;262(1):261–269. doi: 10.1042/bj2620261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wenz A., Thorpe C., Ghisla S. Inactivation of general acyl-CoA dehydrogenase from pig kidney by a metabolite of hypoglycin A. J Biol Chem. 1981 Oct 10;256(19):9809–9812. [PubMed] [Google Scholar]
  36. Yardley H. J., Godfrey G. Some in vitro effects of hypoglycin on skin. Arch Dermatol. 1967 Jul;96(1):89–93. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES