Abstract
The compound eye of the honeybee has previously been shown to contain a soluble retinal photoisomerase which, in vitro, is able to catalyze stereospecifically the photoconversion of all-trans retinal to 11-cis retinal. In this study we combine in vivo and in vitro techniques to demonstrate how the retinal photoisomerase is involved in the visual cycle, creating 11-cis retinal for the generation of visual pigment. Honeybees have approximately 2.5 pmol/eye of retinal associated with visual pigments, but larger amounts (4-12 pmol/eye) of both retinal and retinol bound to soluble proteins. When bees are dark adapted for 24 h or longer, greater than 80% of the endogenous retinal, mostly in the all-trans configuration, is associated with the retinal photoisomerase. On exposure to blue light the retinal is isomerized to 11-cis, which makes it available to an alcohol dehydrogenase. Most of it is then reduced to 11-cis retinol. The retinol is not esterified and remains associated with a soluble protein, serving as a reservoir of 11-cis retinoid available for renewal of visual pigment. Alternatively, 11-cis retinal can be transferred directly to opsin to regenerate rhodopsin, as shown by synthesis of rhodopsin in bleached frog rod outer segments. This retinaldehyde cycle from the honeybee is the third to be described. It appears very similar to the system in another group of arthropods, flies, and differs from the isomerization processes in vertebrates and cephalopod mollusks.
Full Text
The Full Text of this article is available as a PDF (1.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bertrand D., Fuortes G., Muri R. Pigment transformation and electrical responses in retinula cells of drone, Apis mellifera male. J Physiol. 1979 Nov;296:431–441. doi: 10.1113/jphysiol.1979.sp013014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chamberlain S. C., Barlow R. B., Jr Transient membrane shedding in Limulus photoreceptors: control mechanisms under natural lighting. J Neurosci. 1984 Nov;4(11):2792–2810. doi: 10.1523/JNEUROSCI.04-11-02792.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cowman A. F., Zuker C. S., Rubin G. M. An opsin gene expressed in only one photoreceptor cell type of the Drosophila eye. Cell. 1986 Mar 14;44(5):705–710. doi: 10.1016/0092-8674(86)90836-6. [DOI] [PubMed] [Google Scholar]
- Cronin T. W., Goldsmith T. H. Dark regeneration of rhodopsin in crayfish photoreceptors. J Gen Physiol. 1984 Jul;84(1):63–81. doi: 10.1085/jgp.84.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deigner P. S., Law W. C., Cañada F. J., Rando R. R. Membranes as the energy source in the endergonic transformation of vitamin A to 11-cis-retinol. Science. 1989 May 26;244(4907):968–971. doi: 10.1126/science.2727688. [DOI] [PubMed] [Google Scholar]
- Fong S. L., Tsin A. T., Bridges C. D., Liou G. I. Detergents for extraction of visual pigments: types, solubilization, and stability. Methods Enzymol. 1982;81:133–140. doi: 10.1016/s0076-6879(82)81022-7. [DOI] [PubMed] [Google Scholar]
- Fryxell K. J., Meyerowitz E. M. An opsin gene that is expressed only in the R7 photoreceptor cell of Drosophila. EMBO J. 1987 Feb;6(2):443–451. doi: 10.1002/j.1460-2075.1987.tb04774.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fulton B. S., Rando R. R. Biosynthesis of 11-cis-retinoids and retinyl esters by bovine pigment epithelium membranes. Biochemistry. 1987 Dec 1;26(24):7938–7945. doi: 10.1021/bi00398a059. [DOI] [PubMed] [Google Scholar]
- GOLDSMITH T. H., WARNER L. T. VITAMIN A IN THE VISION OF INSECTS. J Gen Physiol. 1964 Jan;47:433–441. doi: 10.1085/jgp.47.3.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldman L. J., Barnes S. N., Goldsmith T. H. Microspectrophotometry of rhodopsin and metarhodopsin in the moth Galleria. J Gen Physiol. 1975 Sep;66(3):383–404. doi: 10.1085/jgp.66.3.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldsmith T. H., Marks B. C., Bernard G. D. Separation and identification of geometric isomers of 3-hydroxyretinoids and occurrence in the eyes of insects. Vision Res. 1986;26(11):1763–1769. doi: 10.1016/0042-6989(86)90126-4. [DOI] [PubMed] [Google Scholar]
- Goldsmith T. H. THE VISUAL SYSTEM OF THE HONEYBEE. Proc Natl Acad Sci U S A. 1958 Feb;44(2):123–126. doi: 10.1073/pnas.44.2.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Groenendijk G. W., De Grip W. J., Daemen F. J. Quantitative determination of retinals with complete retention of their geometric configuration. Biochim Biophys Acta. 1980 Mar 21;617(3):430–438. doi: 10.1016/0005-2760(80)90009-0. [DOI] [PubMed] [Google Scholar]
- Groenendijk G. W., de Grip W. J., Daemen F. J. Identification and characterization of syn- and anti-isomers of retinaloximes. Anal Biochem. 1979 Nov 1;99(2):304–310. doi: 10.1016/s0003-2697(79)80011-1. [DOI] [PubMed] [Google Scholar]
- Hamdorf K., Schwemer J., Gogala M. Insect visual pigment sensitive to ultraviolet light. Nature. 1971 Jun 18;231(5303):458–459. doi: 10.1038/231458a0. [DOI] [PubMed] [Google Scholar]
- Isono K., Tanimura T., Oda Y., Tsukahara Y. Dependency on light and vitamin A derivatives of the biogenesis of 3-hydroxyretinal and visual pigment in the compound eyes of Drosophila melanogaster. J Gen Physiol. 1988 Nov;92(5):587–600. doi: 10.1085/jgp.92.5.587. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kirschfeld K. Die Projektion der optischen Umwelt auf das Raster der Rhabdomere im Komplexauge von MUSCA. Exp Brain Res. 1967;3(3):248–270. doi: 10.1007/BF00235588. [DOI] [PubMed] [Google Scholar]
- Ozaki K., Terakita A., Hara R., Hara T. Isolation and characterization of a retinal-binding protein from the squid retina. Vision Res. 1987;27(7):1057–1070. doi: 10.1016/0042-6989(87)90020-4. [DOI] [PubMed] [Google Scholar]
- Paulsen R., Schwemer J. Biogenesis of blowfly photoreceptor membranes is regulated by 11-cis-retinal. Eur J Biochem. 1983 Dec 15;137(3):609–614. doi: 10.1111/j.1432-1033.1983.tb07869.x. [DOI] [PubMed] [Google Scholar]
- Paulsen R., Schwemer J. Vitamin A deficiency reduces the concentration of visual pigment protein within blowfly photoreceptor membranes. Biochim Biophys Acta. 1979 Nov 2;557(2):385–390. doi: 10.1016/0005-2736(79)90336-5. [DOI] [PubMed] [Google Scholar]
- Pepe I. M., Cugnoli C., Schwemer J. Rhodopsin reconstitution in bleached rod outer segment membranes in the presence of a retinal-binding protein from the honeybee. FEBS Lett. 1990 Jul 30;268(1):177–179. doi: 10.1016/0014-5793(90)81002-6. [DOI] [PubMed] [Google Scholar]
- Pepe I. M., Schwemer J., Paulsen R. Characteristics of retinal-binding proteins from the honeybee retina. Vision Res. 1982;22(7):775–781. doi: 10.1016/0042-6989(82)90008-6. [DOI] [PubMed] [Google Scholar]
- Seki T., Fujishita S., Ito M., Matsuoka N., Kobayashi C., Tsukida K. A fly, Drosophila melanogaster, forms 11-cis 3-hydroxyretinal in the dark. Vision Res. 1986;26(2):255–258. doi: 10.1016/0042-6989(86)90020-9. [DOI] [PubMed] [Google Scholar]
- Seki T., Hara R., Hara T. Reconstitution of squid and cattle rhodopsin by the use of metaretinochrome in their respective membranes. Exp Eye Res. 1982 Apr;34(4):609–621. doi: 10.1016/0014-4835(82)90035-5. [DOI] [PubMed] [Google Scholar]
- Smith W. C., Goldsmith T. H. Phyletic aspects of the distribution of 3-hydroxyretinal in the class Insecta. J Mol Evol. 1990 Jan;30(1):72–84. doi: 10.1007/BF02102454. [DOI] [PubMed] [Google Scholar]
- Stark W. S., Schilly D., Christianson J. S., Bone R. A., Landrum J. T. Photoreceptor-specific efficiencies of beta-carotene, zeaxanthin and lutein for photopigment formation deduced from receptor mutant Drosophila melanogaster. J Comp Physiol A. 1990 Feb;166(4):429–436. doi: 10.1007/BF00192014. [DOI] [PubMed] [Google Scholar]
- Stein P. J., Brammer J. D., Ostroy S. E. Renewal of opsin in the photoreceptor cells of the mosquito. J Gen Physiol. 1979 Nov;74(5):565–582. doi: 10.1085/jgp.74.5.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trehan A., Cañada F. J., Rando R. R. Inhibitors of retinyl ester formation also prevent the biosynthesis of 11-cis-retinol. Biochemistry. 1990 Jan 16;29(2):309–312. doi: 10.1021/bi00454a001. [DOI] [PubMed] [Google Scholar]
- Williams D. S., Blest A. D. Extracellular shedding of photoreceptor membrane in the open rhabdom of a tipulid fly. Cell Tissue Res. 1980;205(3):423–438. doi: 10.1007/BF00232283. [DOI] [PubMed] [Google Scholar]
- Zuker C. S., Cowman A. F., Rubin G. M. Isolation and structure of a rhodopsin gene from D. melanogaster. Cell. 1985 Apr;40(4):851–858. doi: 10.1016/0092-8674(85)90344-7. [DOI] [PubMed] [Google Scholar]