Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1977 Oct;74(10):4185–4189. doi: 10.1073/pnas.74.10.4185

Location of protein(s) involved in oligomycin-induced inhibition of mitochondrial adenosinetriphosphatase near the outer surface of the inner membrane*

Hammou Maïrouch 1, Catherine Godinot 1,
PMCID: PMC431903  PMID: 200906

Abstract

Mitoplasts, that is, mitochondria freed from their outer membranes, were prepared from pig heart. Sonication induced an inversion of these mitoplasts, giving inside-out vesicles. Added cytochrome c can be bound much better to mitoplasts than to sonicated vesicles; addition of trypsin increased adenosinetriphosphatase (ATPase) (ATP phosphohydrolase; EC 3.6.1.3) activity of sonicated vesicles without significantly affecting that of the mitoplasts. Since the site of fixation of cytochrome c was located on the outer side of the inner mitochondrial membrane and since the protein inhibitor of the mitochondrial ATPase is present on the inner face of the inner membrane and is very sensitive to trypsin, it can be concluded that mitoplasts are mainly oriented as normal mitochondria while sonicated vesicles are mainly inverted.

Trypsin treatment can abolish the oligomycin sensitivity of ATPase activity of either mitoplasts or sonicated vesicles. However, trypsin induced the solubilization of the soluble F1-ATPase of sonicated vesicles while the ATPase activity remained with the mitoplasts after trypsin action. Therefore, trypsin destroyed the oligomycin effect by rupturing the liaison between F1 and the membrane in sonicated vesicles. On the other hand, the effect of trypsin on mitoplasts must be attributed to the hydrolysis of a protein located near the outer surface of the inner membrane that is at least structurally involved in the oligomycin sensitivity of the ATPase complex.

Keywords: oxidative phosphorylation, trypsin, membrane topology

Full text

PDF
4185

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avner P. R., Coen D., Dujon B., Slonimski P. P. Mitochondrial genetics. IV. Allelism and mapping studies of oligomycin resistant mutants in S. cerevisiae. Mol Gen Genet. 1973 Sep 5;125(1):9–52. doi: 10.1007/BF00292982. [DOI] [PubMed] [Google Scholar]
  2. Brooks J. C., Senior A. E. Studies on the mitochondrial oligomycin-insensitive ATPase. II. The relationship of the specific protein inhibitor to the ATPase. Arch Biochem Biophys. 1971 Dec;147(2):467–470. doi: 10.1016/0003-9861(71)90402-4. [DOI] [PubMed] [Google Scholar]
  3. Chance B. The nature of electron transfer and energy coupling reactions. FEBS Lett. 1972 Jun 1;23(1):3–20. doi: 10.1016/0014-5793(72)80272-2. [DOI] [PubMed] [Google Scholar]
  4. Di Pietro A., Godinot C., Bouillant M. L., Gautheron D. C. Pig heart mitochondrial ATPase : properties of purified and membrane-bound enzyme. Effects of flavonoids. Biochimie. 1975;57(8):959–967. doi: 10.1016/s0300-9084(75)80218-5. [DOI] [PubMed] [Google Scholar]
  5. Godinot C., Vial C., Font B., Gautheron D. Régulation de d'activité respiratoire des mitochondries de coeur de porc et transformations des nucléotides adényliques et du phosphate. Eur J Biochem. 1969 Apr;8(3):385–394. doi: 10.1111/j.1432-1033.1969.tb00539.x. [DOI] [PubMed] [Google Scholar]
  6. Harmon H. J., Hall J. D., Crane F. L. Structure of mitochondrial cristae membranes. Biochim Biophys Acta. 1974 Sep 16;344(2):119–155. doi: 10.1016/0304-4157(74)90002-1. [DOI] [PubMed] [Google Scholar]
  7. Hinkle P. C., Horstman L. L. Respiration-driven proton transport in submitochondrial particles. J Biol Chem. 1971 Oct 10;246(19):6024–6028. [PubMed] [Google Scholar]
  8. Horstman L. L., Racker E. Partial resolution of the enzyme catalyzing oxidative phosphorylation. XXII. Interaction between mitochondrial adenosine triphosphatase inhibitor and mitochondrial adenosine triphosphatase. J Biol Chem. 1970 Mar 25;245(6):1336–1344. [PubMed] [Google Scholar]
  9. Huang C. H., Keyhani E., Lee C. P. Fractionation by sucrose density gradient centrifugation of membrane fragments derived by sonic disruption of beef heart mitochondria. Biochim Biophys Acta. 1973 May 30;305(2):455–473. doi: 10.1016/0005-2728(73)90191-6. [DOI] [PubMed] [Google Scholar]
  10. JACOBS E. E., SANADI D. R. The reversible removal of cytochrome c from mitochondria. J Biol Chem. 1960 Feb;235:531–534. [PubMed] [Google Scholar]
  11. Kagawa Y., Racker E. Partial resolution of the enzymes catalyzing oxidative phosphorylation. IX. Reconstruction of oligomycin-sensitive adenosine triphosphatase. J Biol Chem. 1966 May 25;241(10):2467–2474. [PubMed] [Google Scholar]
  12. Kanner B. I., Serrano R., Kandrach M. A., Racker E. Preparation and characterization of homogeneous coupling factor 6 from bovine heart mitochondria. Biochem Biophys Res Commun. 1976 Apr 19;69(4):1050–1056. doi: 10.1016/0006-291x(76)90479-4. [DOI] [PubMed] [Google Scholar]
  13. LARDY H. A., JOHNSON D., McMURRAY W. C. Antibiotics as tools for metabolic studies. I. A survey of toxic antibiotics in respiratory, phosphorylative and glycolytic systems. Arch Biochem Biophys. 1958 Dec;78(2):587–597. doi: 10.1016/0003-9861(58)90383-7. [DOI] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. MacLennan D. H., Tzagoloff A. Studies on the mitochondrial adenosine triphosphatase system. IV. Purification and characterization of the oligomycin sensitivity conferring protein. Biochemistry. 1968 Apr;7(4):1603–1610. doi: 10.1021/bi00844a050. [DOI] [PubMed] [Google Scholar]
  16. Maisterrena B., Comte J., Gautheron D. C. Purification of pig heart mitochondrial membranes. Enzymatic and morphological characterization as compared to microsomes. Biochim Biophys Acta. 1974 Oct 29;367(2):115–126. doi: 10.1016/0005-2736(74)90036-4. [DOI] [PubMed] [Google Scholar]
  17. Mitchell P. A chemiosmotic molecular mechanism for proton-translocating adenosine triphosphatases. FEBS Lett. 1974 Jul 15;43(2):189–194. doi: 10.1016/0014-5793(74)80997-x. [DOI] [PubMed] [Google Scholar]
  18. Mitchell P. Hypothesis: cation-translocating adenosine triphosphatase models: how direct is the participation of adenosine triphosphate and its hydrolysis products in cation translocation? FEBS Lett. 1973 Jul 15;33(3):267–274. doi: 10.1016/0014-5793(73)80209-1. [DOI] [PubMed] [Google Scholar]
  19. Montecucco C., Azzi A. Molecular interactions of adenosine triphosphatase with the mitochondrial membrane as revealed by a spin label study. J Biol Chem. 1975 Jul 10;250(13):5020–5025. [PubMed] [Google Scholar]
  20. PULLMAN M. E., MONROY G. C. A NATURALLY OCCURRING INHIBITOR OF MITOCHONDRIAL ADENOSINE TRIPHOSPHATASE. J Biol Chem. 1963 Nov;238:3762–3769. [PubMed] [Google Scholar]
  21. PULLMAN M. E., PENEFSKY H. S., DATTA A., RACKER E. Partial resolution of the enzymes catalyzing oxidative phosphorylation. I. Purification and properties of soluble dinitrophenol-stimulated adenosine triphosphatase. J Biol Chem. 1960 Nov;235:3322–3329. [PubMed] [Google Scholar]
  22. Packer L. Functional organization of intramembrane particles of mitochondrial inner membranes. J Bioenerg. 1972 May;3(1):115–127. doi: 10.1007/BF01516002. [DOI] [PubMed] [Google Scholar]
  23. RACKER E. A mitochondrial factor conferring oligomycin sensitivity on soluble mitochondrial ATPase. Biochem Biophys Res Commun. 1963 Mar 25;10:435–439. doi: 10.1016/0006-291x(63)90375-9. [DOI] [PubMed] [Google Scholar]
  24. Russell L. K., Kirkley S. A., Kleyman T. R., Chan S. H. Isolation and properties of OSCP and an F1-ATPase binding protein from rat liver mitochondria - evidence against OSCP as the linking "stalk" between F1 and the membrane. Biochem Biophys Res Commun. 1976 Nov 22;73(2):434–443. doi: 10.1016/0006-291x(76)90726-9. [DOI] [PubMed] [Google Scholar]
  25. Schnaitman C., Greenawalt J. W. Enzymatic properties of the inner and outer membranes of rat liver mitochondria. J Cell Biol. 1968 Jul;38(1):158–175. doi: 10.1083/jcb.38.1.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Senior A. E., Brooks J. C. Studies on the mitochondrial oligomycin-insensitivt ATPase. I. An improved method of purification and the behavior of the enzyme in solutions of various depolymerizing agents. Arch Biochem Biophys. 1970 Sep;140(1):257–266. doi: 10.1016/0003-9861(70)90030-5. [DOI] [PubMed] [Google Scholar]
  27. Senior A. E. The structure of mitochondrial ATPase. Biochim Biophys Acta. 1973 Dec 31;301(3):249–277. doi: 10.1016/0304-4173(73)90006-2. [DOI] [PubMed] [Google Scholar]
  28. Sottocasa G. L., Kuylenstierna B., Ernster L., Bergstrand A. An electron-transport system associated with the outer membrane of liver mitochondria. A biochemical and morphological study. J Cell Biol. 1967 Feb;32(2):415–438. doi: 10.1083/jcb.32.2.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tzagoloff A., Maclennan D. H., Byington K. H. Studies on the mitochondrial adenosine triphosphatase system. 3. Isolation from the oligomycin-sensitive adenosine triphosphatase complex of the factors which bind F-1 and determine oligomycin sensitivity of bound F-1. Biochemistry. 1968 Apr;7(4):1596–1602. doi: 10.1021/bi00844a049. [DOI] [PubMed] [Google Scholar]
  30. Wang C., Smith R. L. Lowry determination of protein in the presence of Triton X-100. Anal Biochem. 1975 Feb;63(2):414–417. doi: 10.1016/0003-2697(75)90363-2. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES