Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1991 Feb;59(2):466–475. doi: 10.1016/S0006-3495(91)82240-8

A photophysical model for diphenylhexatriene fluorescence decay in solvents and in phospholipid vesicles.

T Parasassi 1, G De Stasio 1, R M Rusch 1, E Gratton 1
PMCID: PMC1281163  PMID: 2009361

Abstract

The fluorescence decay of 1,6-diphenyl-1,3,5-hexatriene (DPH) in pure solvents and in phospholipid vesicles has been measured using frequency domain fluorometry. Data analysis uses a model with two energetically close excited states. The model explains the high quantum yield and the double exponential decay of DPH observed in some pure solvents and in phospholipid vesicles. This model assumes that after excitation to a first excited state, there is a rapid interconversion to a lower excited state and that most of the emission occurs from this state. The interconversion rates between the two excited states determine the average lifetime. For DPH in solvents, we find that the interconversion rates are solvent and temperature dependent. For DPH in phospholipid vesicles, we find that the back reaction rate from excited state 2 to excited state 1 (R12) is what determines the fluorescence properties. The phospholipid phase transition affects only this back reaction rate. The model was analyzed globally for a range of solvents, temperatures and vesicle composition. Of the six parameters of the model, only two, the interconversion rates between the two excited states, varied in all different samples examined. For DPH in phospholipid vesicles, there is an additional feature of the model, which is related to the apparent distribution of the rate R12. Significantly better fits were obtained using a continuous lorentzian distribution of interconversion rates. The resulting lifetime distribution was asymmetric and showed a definite narrowing above the phase transition.

Full text

PDF
466

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alcala J. R., Gratton E., Prendergast F. G. Fluorescence lifetime distributions in proteins. Biophys J. 1987 Apr;51(4):597–604. doi: 10.1016/S0006-3495(87)83384-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barrow D. A., Lentz B. R. Membrane structural domains. Resolution limits using diphenylhexatriene fluorescence decay. Biophys J. 1985 Aug;48(2):221–234. doi: 10.1016/S0006-3495(85)83775-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chen L. A., Dale R. E., Roth S., Brand L. Nanosecond time-dependent fluorescence depolarization of diphenylhexatriene in dimyristoyllecithin vesicles and the determination of "microviscosity". J Biol Chem. 1977 Apr 10;252(7):2163–2169. [PubMed] [Google Scholar]
  4. Dale R. E., Chen L. A., Brand L. Rotational relaxation of the "microviscosity" probe diphenylhexatriene in paraffin oil and egg lecithin vesicles. J Biol Chem. 1977 Nov 10;252(21):7500–7510. [PubMed] [Google Scholar]
  5. Fiorini R. M., Valentino M., Glaser M., Gratton E., Curatola G. Fluorescence lifetime distributions of 1,6-diphenyl-1,3,5-hexatriene reveal the effect of cholesterol on the microheterogeneity of erythrocyte membrane. Biochim Biophys Acta. 1988 Apr 22;939(3):485–492. doi: 10.1016/0005-2736(88)90095-8. [DOI] [PubMed] [Google Scholar]
  6. Fiorini R., Valentino M., Wang S., Glaser M., Gratton E. Fluorescence lifetime distributions of 1,6-diphenyl-1,3,5-hexatriene in phospholipid vesicles. Biochemistry. 1987 Jun 30;26(13):3864–3870. doi: 10.1021/bi00387a019. [DOI] [PubMed] [Google Scholar]
  7. Gratton E., Limkeman M. A continuously variable frequency cross-correlation phase fluorometer with picosecond resolution. Biophys J. 1983 Dec;44(3):315–324. doi: 10.1016/S0006-3495(83)84305-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jendrasiak G. L., Hasty J. H. The electrical conductivity of hydrated phospholipids. Biochim Biophys Acta. 1974 Apr 26;348(1):45–54. doi: 10.1016/0005-2760(74)90091-5. [DOI] [PubMed] [Google Scholar]
  9. Jendrasiak G. L., Hasty J. H. The hydration of phospholipids. Biochim Biophys Acta. 1974 Jan 23;337(1):79–91. doi: 10.1016/0005-2760(74)90042-3. [DOI] [PubMed] [Google Scholar]
  10. Jähnig F. Structural order of lipids and proteins in membranes: evaluation of fluorescence anisotropy data. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6361–6365. doi: 10.1073/pnas.76.12.6361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Klausner R. D., Kleinfeld A. M., Hoover R. L., Karnovsky M. J. Lipid domains in membranes. Evidence derived from structural perturbations induced by free fatty acids and lifetime heterogeneity analysis. J Biol Chem. 1980 Feb 25;255(4):1286–1295. [PubMed] [Google Scholar]
  12. Lentz B. R., Clubb K. W., Alford D. R., Höchli M., Meissner G. Phase behavior of membranes reconstituted from dipentadecanoylphosphatidylcholine and the Mg2+-dependent, Ca2+-stimulated adenosinetriphosphatase of sarcoplasmic reticulum: evidence for a disrupted lipid domain surrounding protein. Biochemistry. 1985 Jan 15;24(2):433–442. doi: 10.1021/bi00323a029. [DOI] [PubMed] [Google Scholar]
  13. Levine Y. K., Birdsall N. J., Lee A. G., Metcalfe J. C. 13 C nuclear magnetic resonance relaxation measurements of synthetic lecithins and the effect of spin-labeled lipids. Biochemistry. 1972 Apr 11;11(8):1416–1421. doi: 10.1021/bi00758a014. [DOI] [PubMed] [Google Scholar]
  14. Parasassi T., Conti F., Glaser M., Gratton E. Detection of phospholipid phase separation. A multifrequency phase fluorimetry study of 1,6-diphenyl-1,3,5-hexatriene fluorescence. J Biol Chem. 1984 Nov 25;259(22):14011–14017. [PubMed] [Google Scholar]
  15. Parasassi T., Conti F., Gratton E., Sapora O. Membranes modification of differentiating proerythroblasts. Variation of 1,6-diphenyl-1,3,5-hexatriene lifetime distributions by multifrequency phase and modulation fluorimetry. Biochim Biophys Acta. 1987 Apr 9;898(2):196–201. doi: 10.1016/0005-2736(87)90038-1. [DOI] [PubMed] [Google Scholar]
  16. Shinitzky M., Dianoux A. C., Gitler C., Weber G. Microviscosity and order in the hydrocarbon region of micelles and membranes determined with fluorescent probes. I. Synthetic micelles. Biochemistry. 1971 May 25;10(11):2106–2113. doi: 10.1021/bi00787a023. [DOI] [PubMed] [Google Scholar]
  17. Stubbs C. D., Kouyama T., Kinosita K., Jr, Ikegami A. Effect of double bonds on the dynamic properties of the hydrocarbon region of lecithin bilayers. Biochemistry. 1981 Jul 21;20(15):4257–4262. doi: 10.1021/bi00518a004. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES