Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2010 Feb 3;26(1):85–89. doi: 10.1007/s12264-010-0604-1

Research advancement in immunopathogenesis of myasthenia gravis

无力的免疫发病机制研究进展

Sha Huang 1, Li-Ming Tan 1,
PMCID: PMC5560374  PMID: 20101276

Abstract

Myasthenia gravis (MG) is an autoimmune neuromuscular junction disease mediated by antibodies against the acetylcholine receptor (AChR). The etiology and immunopathogenesis of MG remain unclear. Recent research has shown the involvement of autoantibodies, lymphocytes, cytokines and chemokines, in the pathogenesis of MG. Systematic factors are also demonstrated, such as inheritance and endocrine. This review indicates the research development in immunopathogenesis of MG.

Keywords: myasthenia gravis, immunological pathogenesis

References

  • [1].Skeie G.O., Aarli J.A., Gilhus N.E. Titin and ryanodine receptor antibodies in myasthenia gravis. Acta Neurol Scand. 2006;S183:19–23. doi: 10.1111/j.1600-0404.2006.00608.x. [DOI] [PubMed] [Google Scholar]
  • [2].Maruta T., Yoshikawa H., Fukasawa S., Umeshita S., Inaoka Y., Edahiro S., et al. Autoantibody to dihydropyridine receptor in myasthenia gravis. J Neuroimmunol. 2009;208(1–2):125–129. doi: 10.1016/j.jneuroim.2009.01.001. [DOI] [PubMed] [Google Scholar]
  • [3].Tackenberg B., Kruth J., Bartholomaeus J.E., Schlegel K., Oertel W.H., Willcox N., et al. Clonal expansions of CD4+ B helper T cells in autoimmune myasthenia gravis. Eur J Immunol. 2007;37(3):849–863. doi: 10.1002/eji.200636449. [DOI] [PubMed] [Google Scholar]
  • [4].Ben-David H., Sharabi A., Dayan M., Sela M., Mozes E. The role of CD8+CD28+ regulatory cells in suppressing myasthenia gravis-associated responses by a dual altered peptide ligand. Proc Natl Acad Sci U S A. 2007;104(44):17459–17464. doi: 10.1073/pnas.0708577104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [5].Bi Y.J., Liu G.W., Yang R.F. Th17 cell induction and immune regulatory effects. J Cell Physiol. 2007;211:273–278. doi: 10.1002/jcp.20973. [DOI] [PubMed] [Google Scholar]
  • [6].Oboki K., Ohno T., Saito H., Nakae S. Th17 and allergy. Allergol Int. 2008;57:121–134. doi: 10.2332/allergolint.R-07-160. [DOI] [PubMed] [Google Scholar]
  • [7].Kramer J.M., Gaffen S.L. Interleukin-17: a new paradigm in inflammation, autoimmunity, and therapy. J Periodontol. 2007;78:1083–1093. doi: 10.1902/jop.2007.060392. [DOI] [PubMed] [Google Scholar]
  • [8].Liu R., La Cava A., Bai X.F., Jee Y., Price M., Campagnolo D.I., et al. Cooperation of invariant NKT cells and CD4+CD25+ T regulatory cells in the prevention of autoimmune myasthenia. J Immunol. 2005;175:7898–7904. doi: 10.4049/jimmunol.175.12.7898. [DOI] [PubMed] [Google Scholar]
  • [9].He X.T., Liu W.B., Feng H.Y., Zhang Y., Huang X., Meng R., et al. The role of CD4+ CD25+ T cells in the mechanism of myasthenia gravis in children and adults. Chin Med J. 2008;88(45):3189–3191. [PubMed] [Google Scholar]
  • [10].Kong Q.F., Sun B., Wang G.Y., Zhai D.X., Mu L.L., Wang D.D., et al. BM stromal cells ameliorate experimental autoimmune myasthenia gravis by altering the balance of Th cells through the secretion of IDO. Eur J Immunol. 2009;39:800–809. doi: 10.1002/eji.200838729. [DOI] [PubMed] [Google Scholar]
  • [11].Dalakas M.C. B cells in the pathophysiology of autoimmune neurological disorders: a credible therapeutic target. Pharmacol Ther. 2006;112(1):57–70. doi: 10.1016/j.pharmthera.2006.03.005. [DOI] [PubMed] [Google Scholar]
  • [12].Sassano P., Paparo F., Ramieri V., Colangeli W., Verdino G. Interleukine-6 (IL-6) may be a link between myasthenia gravis and myoepithelioma of the parotid gland. Med Hypotheses. 2007;68(2):314–317. doi: 10.1016/j.mehy.2006.06.057. [DOI] [PubMed] [Google Scholar]
  • [13].Tüzün E., Meriggioli M.N., Rowin J., Yang H., Christadoss P. Myasthenia gravis patients with low plasma IL-6 and IFN-γ benefit from etanercept treatment. J Autoimmun. 2005;24(3):261–268. doi: 10.1016/j.jaut.2005.01.013. [DOI] [PubMed] [Google Scholar]
  • [14].Xiao B.G., Duan R.S., Zhu W.H., Lu C.Z. The limitation of IL-10-exposed dendritic cells in the treatment of experimental autoimmune myasthenia gravis and myasthenia gravis. Cell Immunol. 2006;241(2):95–101. doi: 10.1016/j.cellimm.2006.08.005. [DOI] [PubMed] [Google Scholar]
  • [15].Yapici Z., Tüzün E., Altunayoðlu V., Erdoðan A., Eraksoy M. High interleukin-10 production is associated with anti-acetylcholine receptor antibody production and treatment response in juvenile myasthenia gravis. Int J Neurosci. 2007;117(11):1505–1512. doi: 10.1080/00207450601125840. [DOI] [PubMed] [Google Scholar]
  • [16].Duan R.S., Link H., Xiao B.G. Long-term effects of IFN-gamma, IL-10, and TGF-β-modulated dendritic cells on immune response in Lewis rats. J Clin Immunol. 2005;25(1):50–56. doi: 10.1007/s10875-005-0357-4. [DOI] [PubMed] [Google Scholar]
  • [17].Alseth E.H., Nakkestad H.L., Aarseth J., Gilhus N.E., Skeie G.O. Interleukin-10 promoter polymorphisms in myasthenia gravis. J Neuroimmunol. 2009;210(1–2):63–66. doi: 10.1016/j.jneuroim.2009.02.009. [DOI] [PubMed] [Google Scholar]
  • [18].Kim H.S., Kim D.S., Lee E.Y., Sunwoo I.N., Choi Y.C. CCR2-64I and CCR5Delta32 polymorphisms in Korean patients with myasthenia gravis. J Clin Neural. 2007;3(3):133–138. doi: 10.3988/jcn.2007.3.3.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [19].Feferman T., Aricha R., Mizrachi K., Geron E., Alon R., Souroujon M.C., et al. Suppression of experimental autoimmune myasthenia gravis by inhibiting the signaling between IFN-γ inducible protein 10 (IP-10) and its receptor CXCR3. J Neuroimmunol. 2009;209(1–2):87–95. doi: 10.1016/j.jneuroim.2009.01.021. [DOI] [PubMed] [Google Scholar]
  • [20].Bai Y., Liu R., Huang D., La Cava A., Tang Y.Y., Iwakura Y., et al. CCL2 recruitment of IL-6-producing CD11b+ monocytes to the draining lymph nodes during the initiation of Th17-dependent B cell-mediated autoimmunity. Eur J Immunol. 2008;38(7):1877–1888. doi: 10.1002/eji.200737973. [DOI] [PubMed] [Google Scholar]
  • [21].Meraouna A., Cizeron-Clairac G., Panse R.L., Bismuth J., Truffault F., Tallaksen C., et al. The chemokine CXCL13 is a key molecule in autoimmune myasthenia gravis. Blood. 2006;108(2):432–440. doi: 10.1182/blood-2005-06-2383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [22].Nancy P., Berrih-Aknin S. Differential estrogen receptor expression in autoimmune myasthenia gravis. Endocrinology. 2005;146(5):2345–2353. doi: 10.1210/en.2004-1003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [23].Yilmaz V., Tütüncü Y., Baris Hasbal N., Parman Y., Serdaroglu P., Deymeer F., et al. Polymorphisms of interferon-γ, interleukin-10, and interleukin-12 genes in myasthenia gravis. Hum Immunol. 2007;68(6):544–549. doi: 10.1016/j.humimm.2007.02.003. [DOI] [PubMed] [Google Scholar]
  • [24].Wang W., Milani M., Ostlie N., Okita D., Agarwal R.K., Caspi R., et al. C57BL/6 mice genetically deficient in IL-12/IL-23 and IFN-γ are susceptible to experimental autoimmune myasthenia gravis, suggesting a pathogenic role of non-Th1 cells. J Immunol. 2007;178(11):7072–7080. doi: 10.4049/jimmunol.178.11.7072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [25].Aranka L., Peter M., Jeno K., Katalin R., Gyula T., Emoke E., et al. Genetically determined neuromuscular disorders of some Roma families living in Hungary. Ideggyogy Sz. 2009;62(1–2):41–47. [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES