Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1991 Mar 15;274(Pt 3):769–774. doi: 10.1042/bj2740769

Glutamine metabolism in skeletal muscles from the broiler chick (Gallus domesticus) and the laboratory rat (Rattus norvegicus)

G Y Wu 1, J R Thompson 1, V E Baracos 1
PMCID: PMC1149977  PMID: 2012604

Abstract

Oxidative decarboxylation of L-[1-14C]glutamine was studied in isolated chick and rat skeletal muscles incubated in the presence of glucose, insulin and plasma concentrations of amino acids. (1) The rate of oxidative decarboxylation of L-[1-14C]glutamine was high, and exceeded that of L-[1-14C]leucine in all muscles. (2) The rate of oxidative decarboxylation of L-[1-14C]glutamine increased with increasing intracellular concentrations of glutamine. (3) The activities of glutamine aminotransferases K and L were more than 10-fold greater in rat than in chick skeletal muscles. (4) Mitochondrial phosphate-activated glutaminase activity was approx. 10-fold greater in chick than in rat skeletal muscles and increased with increasing glutamine concentrations. (5) An inhibitor of glutaminase, 6-diazo-5-oxo-L-norleucine, inhibited the rate of glutamine decarboxylation in chick, but not in rat, skeletal muscle. These findings suggest that glutamine degradation in skeletal muscle may be substantial and may make an important contribution to the regulation of intramuscular glutamine concentrations. A species difference in the pathways and the subcellular location for the conversion of glutamine into 2-oxoglutarate in rat and chick skeletal muscles is implied by the relative activities of glutamine-degrading enzymes.

Full text

PDF
769

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albina J. E., Henry W., King P. A., Shearer J., Mastrofrancesco B., Goldstein L., Caldwell M. D. Glutamine metabolism in rat skeletal muscle wounded with lambda-carrageenan. Am J Physiol. 1987 Jan;252(1 Pt 1):E49–E56. doi: 10.1152/ajpendo.1987.252.1.E49. [DOI] [PubMed] [Google Scholar]
  2. Ardawi M. S., Jamal Y. S. Glutamine metabolism in skeletal muscle of glucocorticoid-treated rats. Clin Sci (Lond) 1990 Aug;79(2):139–147. doi: 10.1042/cs0790139. [DOI] [PubMed] [Google Scholar]
  3. Ardawi M. S., Newsholme E. A. Glutamine metabolism in lymphocytes of the rat. Biochem J. 1983 Jun 15;212(3):835–842. doi: 10.1042/bj2120835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ardawi M. S. Skeletal muscle glutamine production in thermally injured rats. Clin Sci (Lond) 1988 Feb;74(2):165–172. doi: 10.1042/cs0740165. [DOI] [PubMed] [Google Scholar]
  5. Baverel G., Lund P. A role for bicarbonate in the regulation of mammalian glutamine metabolism. Biochem J. 1979 Dec 15;184(3):599–606. doi: 10.1042/bj1840599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  7. Cooper A. J., Meister A. Glutamine transaminases. Prog Clin Biol Res. 1984;144B:3–15. [PubMed] [Google Scholar]
  8. Cooper A. J., Meister A. The glutamine transaminase-omega-amidase pathway. CRC Crit Rev Biochem. 1977;4(3):281–303. doi: 10.3109/10409237709102560. [DOI] [PubMed] [Google Scholar]
  9. Felig P. Amino acid metabolism in man. Annu Rev Biochem. 1975;44:933–955. doi: 10.1146/annurev.bi.44.070175.004441. [DOI] [PubMed] [Google Scholar]
  10. Goldberg A. L., Chang T. W. Regulation and significance of amino acid metabolism in skeletal muscle. Fed Proc. 1978 Jul;37(9):2301–2307. [PubMed] [Google Scholar]
  11. Jepson M. M., Bates P. C., Broadbent P., Pell J. M., Millward D. J. Relationship between glutamine concentration and protein synthesis in rat skeletal muscle. Am J Physiol. 1988 Aug;255(2 Pt 1):E166–E172. doi: 10.1152/ajpendo.1988.255.2.E166. [DOI] [PubMed] [Google Scholar]
  12. King P. A., Goldstein L., Newsholme E. A. Glutamine synthetase activity of muscle in acidosis. Biochem J. 1983 Nov 15;216(2):523–525. doi: 10.1042/bj2160523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kovacevic Z., McGivan J. D. Mitochondrial metabolism of glutamine and glutamate and its physiological significance. Physiol Rev. 1983 Apr;63(2):547–605. doi: 10.1152/physrev.1983.63.2.547. [DOI] [PubMed] [Google Scholar]
  14. Lanks K. W. End products of glucose and glutamine metabolism by L929 cells. J Biol Chem. 1987 Jul 25;262(21):10093–10097. [PubMed] [Google Scholar]
  15. Lee S. H., Davis E. J. Amino acid catabolism by perfused rat hindquarter. The metabolic fates of valine. Biochem J. 1986 Feb 1;233(3):621–630. doi: 10.1042/bj2330621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lowenstein J. M. Ammonia production in muscle and other tissues: the purine nucleotide cycle. Physiol Rev. 1972 Apr;52(2):382–414. doi: 10.1152/physrev.1972.52.2.382. [DOI] [PubMed] [Google Scholar]
  17. MANCHESTER K. L. OXIDATION OF AMINO ACIDS BY ISOLATED RAT DIAPHRAGM AND THE INFLUENCE OF INSULIN. Biochim Biophys Acta. 1965 Apr 12;100:295–298. doi: 10.1016/0304-4165(65)90457-5. [DOI] [PubMed] [Google Scholar]
  18. MEISTER A. Preparation of enzymatic reactions of the keto analogues of asparagine and glutamine. J Biol Chem. 1953 Feb;200(2):571–589. [PubMed] [Google Scholar]
  19. MacLennan P. A., Smith K., Weryk B., Watt P. W., Rennie M. J. Inhibition of protein breakdown by glutamine in perfused rat skeletal muscle. FEBS Lett. 1988 Sep 12;237(1-2):133–136. doi: 10.1016/0014-5793(88)80186-8. [DOI] [PubMed] [Google Scholar]
  20. Matsuda Y., Kuroda Y., Kobayashi K., Katunuma N. Comparative studies on glutamine, serine, and glycine metabolisms in ureotelic and uricotelic animals. J Biochem. 1973 Feb;73(2):291–298. [PubMed] [Google Scholar]
  21. Newsholme P., Gordon S., Newsholme E. A. Rates of utilization and fates of glucose, glutamine, pyruvate, fatty acids and ketone bodies by mouse macrophages. Biochem J. 1987 Mar 15;242(3):631–636. doi: 10.1042/bj2420631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ottaway J. H. On the presence of glutaminase in muscle. Q J Exp Physiol Cogn Med Sci. 1969 Jan;54(1):56–59. doi: 10.1113/expphysiol.1969.sp002005. [DOI] [PubMed] [Google Scholar]
  23. Pinkus L. M. Glutamine binding sites. Methods Enzymol. 1977;46:414–427. doi: 10.1016/s0076-6879(77)46049-x. [DOI] [PubMed] [Google Scholar]
  24. Pinkus L. M., Windmueller H. G. Phosphate-dependent glutaminase of small intestine: localization and role in intestinal glutamine metabolism. Arch Biochem Biophys. 1977 Aug;182(2):506–517. doi: 10.1016/0003-9861(77)90531-8. [DOI] [PubMed] [Google Scholar]
  25. Rapoport S., Rost J., Schultze M. Glutamine and glutamate as respiratory substrates of rabbit reticulocytes. Eur J Biochem. 1971 Nov 11;23(1):166–170. doi: 10.1111/j.1432-1033.1971.tb01604.x. [DOI] [PubMed] [Google Scholar]
  26. Shapiro R. A., Clark V. M., Curthoys N. P. Inactivation of rat renal phosphate-dependent glutaminase with 6-diazo-5-oxo-L-norleucine. Evidence for interaction at the glutamine binding site. J Biol Chem. 1979 Apr 25;254(8):2835–2838. [PubMed] [Google Scholar]
  27. Smith R. J., Larson S., Stred S. E., Durschlag R. P. Regulation of glutamine synthetase and glutaminase activities in cultured skeletal muscle cells. J Cell Physiol. 1984 Aug;120(2):197–203. doi: 10.1002/jcp.1041200213. [DOI] [PubMed] [Google Scholar]
  28. Tian S., Baracos V. E. Prostaglandin-dependent muscle wasting during infection in the broiler chick (Gallus domesticus) and the laboratory rat (Rattus norvegicus). Biochem J. 1989 Oct 15;263(2):485–490. doi: 10.1042/bj2630485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Windmueller H. G., Spaeth A. E. Respiratory fuels and nitrogen metabolism in vivo in small intestine of fed rats. Quantitative importance of glutamine, glutamate, and aspartate. J Biol Chem. 1980 Jan 10;255(1):107–112. [PubMed] [Google Scholar]
  30. Wu G. Y., Thompson J. R. Is methionine transaminated in skeletal muscle? Biochem J. 1989 Jan 1;257(1):281–284. doi: 10.1042/bj2570281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wu G. Y., Thompson J. R. The effect of ketone bodies on alanine and glutamine metabolism in isolated skeletal muscle from the fasted chick. Biochem J. 1988 Oct 1;255(1):139–144. doi: 10.1042/bj2550139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wu G., Thompson J. R., Sedgwick G. W., Drury M. Formation of alanine and glutamine in chick (Gallus domesticus) skeletal muscle. Comp Biochem Physiol B. 1989;93(3):609–613. doi: 10.1016/0305-0491(89)90384-2. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES