Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1991 Feb;102(2):415–421. doi: 10.1111/j.1476-5381.1991.tb12188.x

5-hydroxytryptamine-stimulated accumulation of 1,2-diacylglycerol in the rabbit basilar artery: a role for protein kinase C in smooth muscle contraction.

A H Clark 1, C J Garland 1
PMCID: PMC1918025  PMID: 2015423

Abstract

1. 5-Hydroxytryptamine (5-HT) produced a concentration-dependent increase in the membrane concentration of 1,2-diacylglycerol (DG) in the rabbit isolated basilar artery, but did not stimulate the hydrolysis of membrane phosphoinositide. 2. The 5-HT-induced accumulation of DG could be blocked with the putative phospholipase C inhibitor 2-nitro-4-carboxyphenyl-N,N-diphenylcarbamate (NCDC; 70 microM), but not with the protein kinase C inhibitor, 1-(5-isoquinolinesulphonyl)-2-methyl piperazine (H7; 50 microM). 3. Direct stimulation of protein kinase C with phorbol 12,13-dibutyrate (PDBu) produced sustained smooth muscle contraction which was fairly rapid in onset and could be reversed by H7 but not by NCDC. The inactive phorbol, 4 alpha phorbol 12,13-dideceonate, did not produce contraction in the basilar artery. 4. 5-HT-induced contractions (1 nM-100 microM) were blocked or greatly reduced in the presence of the protein kinase inhibitor H7 or polymyxin B, and with the phospholipase C inhibitor, NCDC. The concentrations of these inhibitors which abolished contraction to 5-HT, did not alter smooth muscle contraction produced in response to 30 mM K(+)-physiological salt solution (PSS). 5. These data suggest that DG production and the subsequent activation of PKC forms an important component of the cerebrovascular contractile response to 5-HT. As the DG does not appear to arise from membrane phosphatidylinositol, it appears that 5-HT can stimulate the production of this second messenger in cerebral arteries by a mechanism which is different from peripheral arteries.

Full text

PDF
415

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baraban J. M., Gould R. J., Peroutka S. J., Snyder S. H. Phorbol ester effects on neurotransmission: interaction with neurotransmitters and calcium in smooth muscle. Proc Natl Acad Sci U S A. 1985 Jan;82(2):604–607. doi: 10.1073/pnas.82.2.604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beh I., Schmidt R., Hecker E. Two isozymes of PKC found in HL-60 cells show a difference in activation by the phorbol ester TPA. FEBS Lett. 1989 Jun 5;249(2):264–266. doi: 10.1016/0014-5793(89)80637-4. [DOI] [PubMed] [Google Scholar]
  3. Berridge M. J. Inositol trisphosphate and diacylglycerol as second messengers. Biochem J. 1984 Jun 1;220(2):345–360. doi: 10.1042/bj2200345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berridge M. J. Inositol trisphosphate and diacylglycerol: two interacting second messengers. Annu Rev Biochem. 1987;56:159–193. doi: 10.1146/annurev.bi.56.070187.001111. [DOI] [PubMed] [Google Scholar]
  5. Besterman J. M., Duronio V., Cuatrecasas P. Rapid formation of diacylglycerol from phosphatidylcholine: a pathway for generation of a second messenger. Proc Natl Acad Sci U S A. 1986 Sep;83(18):6785–6789. doi: 10.1073/pnas.83.18.6785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Blackmore P. F., Bocckino S. B., Waynick L. E., Exton J. H. Role of a guanine nucleotide-binding regulatory protein in the hydrolysis of hepatocyte phosphatidylinositol 4,5-bisphosphate by calcium-mobilizing hormones and the control of cell calcium. Studies utilizing aluminum fluoride. J Biol Chem. 1985 Nov 25;260(27):14477–14483. [PubMed] [Google Scholar]
  7. Bocckino S. B., Blackmore P. F., Exton J. H. Stimulation of 1,2-diacylglycerol accumulation in hepatocytes by vasopressin, epinephrine, and angiotensin II. J Biol Chem. 1985 Nov 15;260(26):14201–14207. [PubMed] [Google Scholar]
  8. Bolton T. B. Calcium metabolism in vascular smooth muscle. Br Med Bull. 1986 Oct;42(4):421–429. doi: 10.1093/oxfordjournals.bmb.a072161. [DOI] [PubMed] [Google Scholar]
  9. Bolton T. B. Mechanisms of action of transmitters and other substances on smooth muscle. Physiol Rev. 1979 Jul;59(3):606–718. doi: 10.1152/physrev.1979.59.3.606. [DOI] [PubMed] [Google Scholar]
  10. Bradley P. B., Engel G., Feniuk W., Fozard J. R., Humphrey P. P., Middlemiss D. N., Mylecharane E. J., Richardson B. P., Saxena P. R. Proposals for the classification and nomenclature of functional receptors for 5-hydroxytryptamine. Neuropharmacology. 1986 Jun;25(6):563–576. doi: 10.1016/0028-3908(86)90207-8. [DOI] [PubMed] [Google Scholar]
  11. Bradley P. B., Humphrey P. P., Williams R. H. Evidence for the existence of 5-hydroxytryptamine receptors, which are not of the 5-HT2 type, mediating contraction of rabbit isolated basilar artery. Br J Pharmacol. 1986 Jan;87(1):3–4. doi: 10.1111/j.1476-5381.1986.tb10149.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cain C. R., Nicholson C. D. Comparison of the effects of cromakalim, a potassium conductance enhancer, and nimodipine, a calcium antagonist, on 5-hydroxytryptamine responses in a variety of vascular smooth muscle preparations. Naunyn Schmiedebergs Arch Pharmacol. 1989 Sep;340(3):293–299. doi: 10.1007/BF00168513. [DOI] [PubMed] [Google Scholar]
  13. Chatterjee M., Tejada M. Phorbol ester-induced contraction in chemically skinned vascular smooth muscle. Am J Physiol. 1986 Sep;251(3 Pt 1):C356–C361. doi: 10.1152/ajpcell.1986.251.3.C356. [DOI] [PubMed] [Google Scholar]
  14. Chilvers E. R., Barnes P. J., Nahorski S. R. Characterization of agonist-stimulated incorporation of myo-[3H]inositol into inositol phospholipids and [3H]inositol phosphate formation in tracheal smooth muscle. Biochem J. 1989 Sep 15;262(3):739–746. doi: 10.1042/bj2620739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Donaldson J., Hill S. J. Histamine-induced inositol phospholipid breakdown in the longitudinal smooth muscle of guinea-pig ileum. Br J Pharmacol. 1985 Jun;85(2):499–512. doi: 10.1111/j.1476-5381.1985.tb08887.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Forder J., Scriabine A., Rasmussen H. Plasma membrane calcium flux, protein kinase C activation and smooth muscle contraction. J Pharmacol Exp Ther. 1985 Nov;235(2):267–273. [PubMed] [Google Scholar]
  17. Garland C. J. The role of membrane depolarization in the contractile response of the rabbit basilar artery to 5-hydroxytryptamine. J Physiol. 1987 Nov;392:333–348. doi: 10.1113/jphysiol.1987.sp016783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gleason M. M., Flaim S. F. Phorbol ester contracts rabbit thoracic aorta by increasing intracellular calcium and by activating calcium influx. Biochem Biophys Res Commun. 1986 Aug 14;138(3):1362–1369. doi: 10.1016/s0006-291x(86)80433-8. [DOI] [PubMed] [Google Scholar]
  19. Grillone L. R., Clark M. A., Godfrey R. W., Stassen F., Crooke S. T. Vasopressin induces V1 receptors to activate phosphatidylinositol- and phosphatidylcholine-specific phospholipase C and stimulates the release of arachidonic acid by at least two pathways in the smooth muscle cell line, A-10. J Biol Chem. 1988 Feb 25;263(6):2658–2663. [PubMed] [Google Scholar]
  20. Hashimoto T., Hirata M., Itoh T., Kanmura Y., Kuriyama H. Inositol 1,4,5-trisphosphate activates pharmacomechanical coupling in smooth muscle of the rabbit mesenteric artery. J Physiol. 1986 Jan;370:605–618. doi: 10.1113/jphysiol.1986.sp015953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hidaka H., Inagaki M., Kawamoto S., Sasaki Y. Isoquinolinesulfonamides, novel and potent inhibitors of cyclic nucleotide dependent protein kinase and protein kinase C. Biochemistry. 1984 Oct 9;23(21):5036–5041. doi: 10.1021/bi00316a032. [DOI] [PubMed] [Google Scholar]
  22. Irving H. R., Exton J. H. Phosphatidylcholine breakdown in rat liver plasma membranes. Roles of guanine nucleotides and P2-purinergic agonists. J Biol Chem. 1987 Mar 15;262(8):3440–3443. [PubMed] [Google Scholar]
  23. Jiang M. J., Morgan K. G. Agonist-specific myosin phosphorylation and intracellular calcium during isometric contractions of arterial smooth muscle. Pflugers Arch. 1989 Apr;413(6):637–643. doi: 10.1007/BF00581814. [DOI] [PubMed] [Google Scholar]
  24. Khalil R. A., van Breemen C. Sustained contraction of vascular smooth muscle: calcium influx or C-kinase activation? J Pharmacol Exp Ther. 1988 Feb;244(2):537–542. [PubMed] [Google Scholar]
  25. Lacal J. C., Moscat J., Aaronson S. A. Novel source of 1,2-diacylglycerol elevated in cells transformed by Ha-ras oncogene. Nature. 1987 Nov 19;330(6145):269–272. doi: 10.1038/330269a0. [DOI] [PubMed] [Google Scholar]
  26. Mazzei G. J., Katoh N., Kuo J. F. Polymyxin B is a more selective inhibitor for phospholipid-sensitive Ca2+-dependent protein kinase than for calmodulin-sensitive Ca2+-dependent protein kinase. Biochem Biophys Res Commun. 1982 Dec 31;109(4):1129–1133. doi: 10.1016/0006-291x(82)91894-0. [DOI] [PubMed] [Google Scholar]
  27. McCalden T. A., Bevan J. A. Sources of activator calcium in rabbit basilar artery. Am J Physiol. 1981 Aug;241(2):H129–H133. doi: 10.1152/ajpheart.1981.241.2.H129. [DOI] [PubMed] [Google Scholar]
  28. Muir J. G., Murray A. W. Bombesin and phorbol ester stimulate phosphatidylcholine hydrolysis by phospholipase C: evidence for a role of protein kinase C. J Cell Physiol. 1987 Mar;130(3):382–391. doi: 10.1002/jcp.1041300311. [DOI] [PubMed] [Google Scholar]
  29. Nakaki T., Roth B. L., Chuang D. M., Costa E. Phasic and tonic components in 5-HT2 receptor-mediated rat aorta contraction: participation of Ca++ channels and phospholipase C. J Pharmacol Exp Ther. 1985 Aug;234(2):442–446. [PubMed] [Google Scholar]
  30. Nishizuka Y. The Albert Lasker Medical Awards. The family of protein kinase C for signal transduction. JAMA. 1989 Oct 6;262(13):1826–1833. [PubMed] [Google Scholar]
  31. Nishizuka Y. The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature. 1988 Aug 25;334(6184):661–665. doi: 10.1038/334661a0. [DOI] [PubMed] [Google Scholar]
  32. Nishizuka Y. Turnover of inositol phospholipids and signal transduction. Science. 1984 Sep 21;225(4668):1365–1370. doi: 10.1126/science.6147898. [DOI] [PubMed] [Google Scholar]
  33. Parsons A. A., Whalley E. T. Evidence for the presence of 5-HT1-like receptors in rabbit isolated basilar arteries. Eur J Pharmacol. 1989 Dec 19;174(2-3):189–196. doi: 10.1016/0014-2999(89)90311-7. [DOI] [PubMed] [Google Scholar]
  34. Rasmussen H., Forder J., Kojima I., Scriabine A. TPA-induced contraction of isolated rabbit vascular smooth muscle. Biochem Biophys Res Commun. 1984 Jul 31;122(2):776–784. doi: 10.1016/s0006-291x(84)80101-1. [DOI] [PubMed] [Google Scholar]
  35. Roth B. L., Nakaki T., Chuang D. M., Costa E. 5-Hydroxytryptamine2 receptors coupled to phospholipase C in rat aorta: modulation of phosphoinositide turnover by phorbol ester. J Pharmacol Exp Ther. 1986 Aug;238(2):480–485. [PubMed] [Google Scholar]
  36. Ruzycky A. L., Morgan K. G. Involvement of the protein kinase C system in calcium-force relationships in ferret aorta. Br J Pharmacol. 1989 Jun;97(2):391–400. doi: 10.1111/j.1476-5381.1989.tb11966.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sharma R. V., Bhalla R. C. Regulation of cytosolic free Ca2+ concentration in vascular smooth muscle cells by A- and C-kinases. Hypertension. 1989 Jun;13(6 Pt 2):845–850. doi: 10.1161/01.hyp.13.6.845. [DOI] [PubMed] [Google Scholar]
  38. Somlyo A. V., Bond M., Somlyo A. P., Scarpa A. Inositol trisphosphate-induced calcium release and contraction in vascular smooth muscle. Proc Natl Acad Sci U S A. 1985 Aug;82(15):5231–5235. doi: 10.1073/pnas.82.15.5231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sperti G., Colucci W. S. Phorbol ester-stimulated bidirectional transmembrane calcium flux in A7r5 vascular smooth muscle cells. Mol Pharmacol. 1987 Jul;32(1):37–42. [PubMed] [Google Scholar]
  40. Towart R. The selective inhibition of serotonin-induced contractions of rabbit cerebral vascular smooth muscle by calcium-antagonistic dihydropyridines. An investigation of the mechanism of action of nimodipine. Circ Res. 1981 May;48(5):650–657. doi: 10.1161/01.res.48.5.650. [DOI] [PubMed] [Google Scholar]
  41. Turla M. B., Webb R. C. Augmented phosphoinositide metabolism in aortas from genetically hypertensive rats. Am J Physiol. 1990 Jan;258(1 Pt 2):H173–H178. doi: 10.1152/ajpheart.1990.258.1.H173. [DOI] [PubMed] [Google Scholar]
  42. Walenga R., Vanderhoek J. Y., Feinstein M. B. Serine esterase inhibitors block stimulus-induced mobilization of arachidonic acid and phosphatidylinositide-specific phospholipase C activity in platelets. J Biol Chem. 1980 Jul 10;255(13):6024–6027. [PubMed] [Google Scholar]
  43. Wrenn R. W., Wooten M. W. Dual calcium-dependent protein phosphorylation systems in pancreas and their differential regulation by polymyxin B1. Life Sci. 1984 Jul 16;35(3):267–276. doi: 10.1016/0024-3205(84)90110-3. [DOI] [PubMed] [Google Scholar]
  44. Young A. R., MacKenzie E. T., Seylaz J., Verrecchia C. Receptors involved in the 5-hydroxytryptamine-induced contraction of isolated cerebral arteries. Acta Physiol Scand Suppl. 1986;552:54–57. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES