Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1991 Apr 1;275(Pt 1):105–111. doi: 10.1042/bj2750105

Distinct forms of cytochrome P-450 are responsible for 6 beta-hydroxylation of bile acids and of neutral steroids.

P Zimniak 1, E J Holsztynska 1, A Radominska 1, M Iscan 1, R Lester 1, D J Waxman 1
PMCID: PMC1150019  PMID: 2018466

Abstract

Cytochrome P-450-dependent 6 beta-hydroxylation of bile acids in rat liver contributes to the synthesis of the quantitatively important pool of 6-hydroxylated bile acids, as well as to the detoxification of hydrophobic bile acids. The lithocholic acid 6 beta-hydroxylation reaction was investigated and compared with androstenedione 6 beta-hydroxylation. Differential responses of these two activities to inducers and inhibitors of microsomal P-450 enzymes, lack of mutual inhibition by the two substrates and differential inhibition by antibodies raised against several purified hepatic cytochromes P-450 were observed. From these results it was concluded that 6 beta-hydroxylation of lithocholic acid is catalysed by P-450 form(s) different from the subfamily IIIA cytochromes P-450 which are responsible for the bulk of microsomal androstenedione 6 beta-hydroxylation. Similar, but more tentative, results revealed that the 7 alpha-hydroxylation of lithocholic acid and of androstenedione may be also catalysed by distinct P-450 enzymes. The results indicate that cytochromes P-450 hydroxylating bile acids are distinct from analogous enzymes that carry out reactions of the same regio- and stereo-specificity on neutral steroids (steroid hormones). A comparison of pairs of cytochromes P-450 that catalyse the same reaction on closely related steroid molecules will help to define those structural elements in the proteins that determine the recognition of their respective substrates.

Full text

PDF
105

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aso M., Miyazaki K., Yanagisawa J., Nakayama F. Bile acid metabolism in isolated rat hepatocytes: studied by gas-liquid chromatography-mass spectrometry-selected ion monitoring. J Biochem. 1987 Jun;101(6):1429–1436. doi: 10.1093/oxfordjournals.jbchem.a122012. [DOI] [PubMed] [Google Scholar]
  2. Ayaki Y., Kok E., Javitt N. B. Cholic acid synthesis from 26-hydroxycholesterol and 3-hydroxy-5-cholestenoic acid in the rabbit. J Biol Chem. 1989 Mar 5;264(7):3818–3821. [PubMed] [Google Scholar]
  3. Beaune P. H., Umbenhauer D. R., Bork R. W., Lloyd R. S., Guengerich F. P. Isolation and sequence determination of a cDNA clone related to human cytochrome P-450 nifedipine oxidase. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8064–8068. doi: 10.1073/pnas.83.21.8064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Björkhem I., Danielsson H., Wikvall K. Hydroxylations of bile acids by reconstituted systems from rat liver microsomes. J Biol Chem. 1974 Oct 25;249(20):6439–6445. [PubMed] [Google Scholar]
  5. Bork R. W., Muto T., Beaune P. H., Srivastava P. K., Lloyd R. S., Guengerich F. P. Characterization of mRNA species related to human liver cytochrome P-450 nifedipine oxidase and the regulation of catalytic activity. J Biol Chem. 1989 Jan 15;264(2):910–919. [PubMed] [Google Scholar]
  6. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  7. Brown C. A., Black S. D. Membrane topology of mammalian cytochromes P-450 from liver endoplasmic reticulum. Determination by trypsinolysis of phenobarbital-treated microsomes. J Biol Chem. 1989 Mar 15;264(8):4442–4449. [PubMed] [Google Scholar]
  8. Davis R. A., Hyde P. M., Kuan J. C., Malone-McNeal M., Archambault-Schexnayder J. Bile acid secretion by cultured rat hepatocytes. Regulation by cholesterol availability. J Biol Chem. 1983 Mar 25;258(6):3661–3667. [PubMed] [Google Scholar]
  9. Edwards R. J., Murray B. P., Boobis A. R., Davies D. S. Identification and location of alpha-helices in mammalian cytochromes P450. Biochemistry. 1989 May 2;28(9):3762–3770. doi: 10.1021/bi00435a021. [DOI] [PubMed] [Google Scholar]
  10. Edwards R. J., Murray B. P., Singleton A. M., Davies D. S., Boobis A. R. Identification of surface regions of cytochromes P-450 using anti-peptide antibodies. Biochem Soc Trans. 1989 Dec;17(6):1022–1023. doi: 10.1042/bst0171022. [DOI] [PubMed] [Google Scholar]
  11. Edwards R. J., Singleton A. M., Murray B. P., Sesardic D., Rich K. J., Davies D. S., Boobis A. R. An anti-peptide antibody targeted to a specific region of rat cytochrome P-450IA2 inhibits enzyme activity. Biochem J. 1990 Mar 1;266(2):497–504. doi: 10.1042/bj2660497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Elshourbagy N. A., Guzelian P. S. Separation, purification, and characterization of a novel form of hepatic cytochrome P-450 from rats treated with pregnenolone-16 alpha-carbonitrile. J Biol Chem. 1980 Feb 25;255(4):1279–1285. [PubMed] [Google Scholar]
  13. Gonzalez F. J., Nebert D. W., Hardwick J. P., Kasper C. B. Complete cDNA and protein sequence of a pregnenolone 16 alpha-carbonitrile-induced cytochrome P-450. A representative of a new gene family. J Biol Chem. 1985 Jun 25;260(12):7435–7441. [PubMed] [Google Scholar]
  14. Gonzalez F. J., Schmid B. J., Umeno M., Mcbride O. W., Hardwick J. P., Meyer U. A., Gelboin H. V., Idle J. R. Human P450PCN1: sequence, chromosome localization, and direct evidence through cDNA expression that P450PCN1 is nifedipine oxidase. DNA. 1988 Mar;7(2):79–86. doi: 10.1089/dna.1988.7.79. [DOI] [PubMed] [Google Scholar]
  15. Gonzalez F. J., Song B. J., Hardwick J. P. Pregnenolone 16 alpha-carbonitrile-inducible P-450 gene family: gene conversion and differential regulation. Mol Cell Biol. 1986 Aug;6(8):2969–2976. doi: 10.1128/mcb.6.8.2969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gonzalez F. J. The molecular biology of cytochrome P450s. Pharmacol Rev. 1988 Dec;40(4):243–288. [PubMed] [Google Scholar]
  17. Graves P. E., Kaminsky L. S., Halpert J. Evidence for functional and structural multiplicity of pregnenolone-16 alpha-carbonitrile-inducible cytochrome P-450 isozymes in rat liver microsomes. Biochemistry. 1987 Jun 30;26(13):3887–3894. doi: 10.1021/bi00387a022. [DOI] [PubMed] [Google Scholar]
  18. Guengerich F. P., Dannan G. A., Wright S. T., Martin M. V., Kaminsky L. S. Purification and characterization of liver microsomal cytochromes p-450: electrophoretic, spectral, catalytic, and immunochemical properties and inducibility of eight isozymes isolated from rats treated with phenobarbital or beta-naphthoflavone. Biochemistry. 1982 Nov 9;21(23):6019–6030. doi: 10.1021/bi00266a045. [DOI] [PubMed] [Google Scholar]
  19. Halpert J. R. Multiplicity of steroid-inducible cytochromes P-450 in rat liver microsomes. Arch Biochem Biophys. 1988 May 15;263(1):59–68. doi: 10.1016/0003-9861(88)90613-3. [DOI] [PubMed] [Google Scholar]
  20. Halvorson M., Greenway D., Eberhart D., Fitzgerald K., Parkinson A. Reconstitution of testosterone oxidation by purified rat cytochrome P450p (IIIA1). Arch Biochem Biophys. 1990 Feb 15;277(1):166–180. doi: 10.1016/0003-9861(90)90566-h. [DOI] [PubMed] [Google Scholar]
  21. Hylemon P. B., Gurley E. C., Kubaska W. M., Whitehead T. R., Guzelian P. S., Vlahcevic Z. R. Suitability of primary monolayer cultures of adult rat hepatocytes for studies of cholesterol and bile acid metabolism. J Biol Chem. 1985 Jan 25;260(2):1015–1019. [PubMed] [Google Scholar]
  22. Imaoka S., Terano Y., Funae Y. Constitutive testosterone 6 beta-hydroxylase in rat liver. J Biochem. 1988 Sep;104(3):481–487. doi: 10.1093/oxfordjournals.jbchem.a122494. [DOI] [PubMed] [Google Scholar]
  23. LeBlanc G. A., Waxman D. J. Feminization of rat hepatic P-450 expression by cisplatin. Evidence for perturbations in the hormonal regulation of steroid-metabolizing enzymes. J Biol Chem. 1988 Oct 25;263(30):15732–15739. [PubMed] [Google Scholar]
  24. Matsunaga T., Nagata K., Holsztynska E. J., Lapenson D. P., Smith A., Kato R., Gelboin H. V., Waxman D. J., Gonzalez F. J. Gene conversion and differential regulation in the rat P-450 IIA gene subfamily. Purification, catalytic activity, cDNA and deduced amino acid sequence, and regulation of an adult male-specific hepatic testosterone 15 alpha-hydroxylase. J Biol Chem. 1988 Dec 5;263(34):17995–18002. [PubMed] [Google Scholar]
  25. McClellan-Green P., Waxman D. J., Caveness M., Goldstein J. A. Phenotypic differences in expression of cytochrome P-450g but not its mRNA in outbred male Sprague-Dawley rats. Arch Biochem Biophys. 1987 Feb 15;253(1):13–25. doi: 10.1016/0003-9861(87)90632-1. [DOI] [PubMed] [Google Scholar]
  26. Nebert D. W., Nelson D. R., Adesnik M., Coon M. J., Estabrook R. W., Gonzalez F. J., Guengerich F. P., Gunsalus I. C., Johnson E. F., Kemper B. The P450 superfamily: updated listing of all genes and recommended nomenclature for the chromosomal loci. DNA. 1989 Jan-Feb;8(1):1–13. doi: 10.1089/dna.1.1989.8.1. [DOI] [PubMed] [Google Scholar]
  27. Nelson D. R., Strobel H. W. Evolution of cytochrome P-450 proteins. Mol Biol Evol. 1987 Nov;4(6):572–593. doi: 10.1093/oxfordjournals.molbev.a040471. [DOI] [PubMed] [Google Scholar]
  28. Nelson D. R., Strobel H. W. Secondary structure prediction of 52 membrane-bound cytochromes P450 shows a strong structural similarity to P450cam. Biochemistry. 1989 Jan 24;28(2):656–660. doi: 10.1021/bi00428a036. [DOI] [PubMed] [Google Scholar]
  29. OKUDA K., KAZUNO T. Stero-bile sterols. 39. Metabolism of lithocholic acid. J Biochem. 1961 Jul;50:20–23. doi: 10.1093/oxfordjournals.jbchem.a127402. [DOI] [PubMed] [Google Scholar]
  30. Princen H. M., Meijer P. Hydroxylation, conjugation and sulfation of bile acids in primary monolayer cultures of rat hepatocytes. Biochem Biophys Res Commun. 1988 Aug 15;154(3):1114–1121. doi: 10.1016/0006-291x(88)90256-2. [DOI] [PubMed] [Google Scholar]
  31. Radomińska-Pyrek A., Zimniak P., Irshaid Y. M., Lester R., Tephly T. R., St Pyrek J. Glucuronidation of 6 alpha-hydroxy bile acids by human liver microsomes. J Clin Invest. 1987 Jul;80(1):234–241. doi: 10.1172/JCI113053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Reidy G. F., Murray M. In vitro inhibition of hepatic steroid hydroxylation by tamoxifen, a series of tamoxifen analogues and related compounds. Biochem Pharmacol. 1989 Jan 1;38(1):195–199. doi: 10.1016/0006-2952(89)90168-8. [DOI] [PubMed] [Google Scholar]
  33. Ryan D. E., Levin W. Purification and characterization of hepatic microsomal cytochrome P-450. Pharmacol Ther. 1990;45(2):153–239. doi: 10.1016/0163-7258(90)90029-2. [DOI] [PubMed] [Google Scholar]
  34. Sheets J. J., Mason J. I., Wise C. A., Estabrook R. W. Inhibition of rat liver microsomal cytochrome P-450 steroid hydroxylase reactions by imidazole antimycotic agents. Biochem Pharmacol. 1986 Feb 1;35(3):487–491. doi: 10.1016/0006-2952(86)90224-8. [DOI] [PubMed] [Google Scholar]
  35. THOMAS P. J., HSIA S. L., MATSCHINER J. T., DOISY E. A., Jr, ELLIOTT W. H., THAYER S. A., DOISY E. A. BILE ACIDS. XIX. METABOLISM OF LITHOCHOLIC ACID-24-14C IN THE RAT. J Biol Chem. 1964 Jan;239:102–105. [PubMed] [Google Scholar]
  36. THOMAS P. J., HSIA S. L., MATSCHINER J. T., THAYER S. A., ELLIOTT W. H., DOISY E. A., Jr, DOISY E. A. BILE ACIDS. XXI. METABOLISM OF 3-ALPHA,6-BETA-DIHYDROXY-5-BETA-CHOLANOIC ACID-24-C 14-6-ALPHA-H3 IN THE RAT. J Biol Chem. 1965 Mar;240:1059–1063. [PubMed] [Google Scholar]
  37. Takita M., Ikawa S., Ogura Y. Effect of bile duct ligation on bile acid and cholesterol metabolism in rats. J Biochem. 1988 May;103(5):778–786. doi: 10.1093/oxfordjournals.jbchem.a122346. [DOI] [PubMed] [Google Scholar]
  38. Vergères G., Winterhalter K. H., Richter C. Identification of the membrane anchor of microsomal rat liver cytochrome P-450. Biochemistry. 1989 May 2;28(9):3650–3655. doi: 10.1021/bi00435a005. [DOI] [PubMed] [Google Scholar]
  39. Voigt W., Hsia S. L., Cooper D. Y., Rosenthal O. Photoreactivation spectrum of the co-inhibited taurochenodeoxycholate 6beta-hydroxylase system. FEBS Lett. 1968 Dec;2(2):124–126. doi: 10.1016/0014-5793(68)80120-6. [DOI] [PubMed] [Google Scholar]
  40. Voigt W., Thomas P. J., Hsia S. L. Enzymic studies of bile acid metabolism. I. 6-beta-Hydroxylation of chenodeoxycholic and taurochenodeoxycholic acids by microsomal preparations of rat liver. J Biol Chem. 1968 Jun 25;243(12):3493–3499. [PubMed] [Google Scholar]
  41. Waxman D. J., Dannan G. A., Guengerich F. P. Regulation of rat hepatic cytochrome P-450: age-dependent expression, hormonal imprinting, and xenobiotic inducibility of sex-specific isoenzymes. Biochemistry. 1985 Jul 30;24(16):4409–4417. doi: 10.1021/bi00337a023. [DOI] [PubMed] [Google Scholar]
  42. Waxman D. J. Interactions of hepatic cytochromes P-450 with steroid hormones. Regioselectivity and stereospecificity of steroid metabolism and hormonal regulation of rat P-450 enzyme expression. Biochem Pharmacol. 1988 Jan 1;37(1):71–84. doi: 10.1016/0006-2952(88)90756-3. [DOI] [PubMed] [Google Scholar]
  43. Waxman D. J., Ko A., Walsh C. Regioselectivity and stereoselectivity of androgen hydroxylations catalyzed by cytochrome P-450 isozymes purified from phenobarbital-induced rat liver. J Biol Chem. 1983 Oct 10;258(19):11937–11947. [PubMed] [Google Scholar]
  44. Waxman D. J., LeBlanc G. A., Morrissey J. J., Staunton J., Lapenson D. P. Adult male-specific and neonatally programmed rat hepatic P-450 forms RLM2 and 2a are not dependent on pulsatile plasma growth hormone for expression. J Biol Chem. 1988 Aug 15;263(23):11396–11406. [PubMed] [Google Scholar]
  45. Waxman D. J., Ram P. A., Notani G., LeBlanc G. A., Alberta J. A., Morrissey J. J., Sundseth S. S. Pituitary regulation of the male-specific steroid 6 beta-hydroxylase P-450 2a (gene product IIIA2) in adult rat liver. Suppressive influence of growth hormone and thyroxine acting at a pretranslational leve;. Mol Endocrinol. 1990 Mar;4(3):447–454. doi: 10.1210/mend-4-3-447. [DOI] [PubMed] [Google Scholar]
  46. Waxman D. J. Rat hepatic cytochrome P-450 isoenzyme 2c. Identification as a male-specific, developmentally induced steroid 16 alpha-hydroxylase and comparison to a female-specific cytochrome P-450 isoenzyme. J Biol Chem. 1984 Dec 25;259(24):15481–15490. [PubMed] [Google Scholar]
  47. Wrighton S. A., Schuetz E. G., Watkins P. B., Maurel P., Barwick J., Bailey B. S., Hartle H. T., Young B., Guzelian P. Demonstration in multiple species of inducible hepatic cytochromes P-450 and their mRNAs related to the glucocorticoid-inducible cytochrome P-450 of the rat. Mol Pharmacol. 1985 Sep;28(3):312–321. [PubMed] [Google Scholar]
  48. Yamazoe Y., Murayama N., Shimada M., Yamauchi K., Nagata K., Imaoka S., Funae Y., Kato R. A sex-specific form of cytochrome P-450 catalyzing propoxycoumarin O-depropylation and its identity with testosterone 6 beta-hydroxylase in untreated rat livers: reconstitution of the activity with microsomal lipids. J Biochem. 1988 Nov;104(5):785–790. doi: 10.1093/oxfordjournals.jbchem.a122550. [DOI] [PubMed] [Google Scholar]
  49. Yousef I. M., Kakis G., Fisher M. M. Bile acid metabolism in mammals. 3. Sex difference in the bile acid composition of rat bile. Can J Biochem. 1972 Apr;50(4):402–408. doi: 10.1139/o72-054. [DOI] [PubMed] [Google Scholar]
  50. Yousef I. M., Tuchweber B. Bile acid composition in neonatal life in rats. Biol Neonate. 1982;42(3-4):105–112. doi: 10.1159/000241583. [DOI] [PubMed] [Google Scholar]
  51. Zimniak P., Holsztynska E. J., Lester R., Waxman D. J., Radominska A. Detoxification of lithocholic acid. Elucidation of the pathways of oxidative metabolism in rat liver microsomes. J Lipid Res. 1989 Jun;30(6):907–918. [PubMed] [Google Scholar]
  52. Zimniak P., Radominska A., Zimniak M., Lester R. Formation of three types of glucuronides of 6-hydroxy bile acids by rat liver microsomes. J Lipid Res. 1988 Feb;29(2):183–190. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES