Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1977 Dec;89(3):703–716.

The stability of events in the natural history of neoplasia.

H C Pitot
PMCID: PMC2032262  PMID: 202165

Abstract

Previous studies on the natural history of neoplasia, utilizing mouse skin as a model, have demonstrated that the process of epidermal carcinogenesis may be separated into at least two different phases. The first of these, termed "initiation," is essentially irreversible; the second phase, that of promotion, may be modulated or reversed by a variety of environmental conditions. More recently, similar stages have been demonstrated for other organ systems during carcinogenesis, in particular that of murine liver. At the same time, investigations of a variety of systems including those in plants, amphibians, and, most recently, in mammals have demonstrated that the initiation process of neoplasia may not be as irreversible as previously considered, but in several of these systems, including those in plants and in the mouse teratoma, the neoplastic process appears to be reversible from its initial stages under appropriate conditions. A proposed scheme is presented which takes into account the reversibility of the process of initiation in the natural history of neoplasia.

Full text

PDF
703

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boutwell R. K. The function and mechanism of promoters of carcinogenesis. CRC Crit Rev Toxicol. 1974 Jan;2(4):419–443. doi: 10.3109/10408447309025704. [DOI] [PubMed] [Google Scholar]
  2. Braun A. C. The relevance of plant tumor systems to an understanding of the basic cellular mechanisms underlying tumorigenesis. Prog Exp Tumor Res. 1972;15:165–187. doi: 10.1159/000392513. [DOI] [PubMed] [Google Scholar]
  3. Braun A. C., Wood H. N. Suppression of the neoplastic state with the acquisition of specialized functions in cells, tissues, and organs of crown gall teratomas of tobacco. Proc Natl Acad Sci U S A. 1976 Feb;73(2):496–500. doi: 10.1073/pnas.73.2.496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cole L. J., Nowell P. C. Radiation carcinogenesis: the sequence of events. Science. 1965 Dec 31;150(3705):1782–1786. doi: 10.1126/science.150.3705.1782. [DOI] [PubMed] [Google Scholar]
  5. Evans A. E., Gerson J., Schnaufer L. Spontaneous regression of neuroblastoma. Natl Cancer Inst Monogr. 1976 Nov;44:49–54. [PubMed] [Google Scholar]
  6. Fiala S., Mohindru A., Kettering W. G., Fiala A. E., Morris H. P. Glutathione and gamma glutamyl transpeptidase in rat liver during chemical carcinogenesis. J Natl Cancer Inst. 1976 Sep;57(3):591–598. doi: 10.1093/jnci/57.3.591. [DOI] [PubMed] [Google Scholar]
  7. Foulds L. Multiple etiologic factors in neoplastic development. Cancer Res. 1965 Sep;25(8):1339–1347. [PubMed] [Google Scholar]
  8. Friedrich-Freksa H., Gössner W., Börner P. Histochemische Untersuchungen der Cancerogenese in der Rattenleber nach Dauergaben von Diäthylnitrosamin. Z Krebsforsch. 1969;72(3):226–239. [PubMed] [Google Scholar]
  9. Friend C., Scher W., Holland J. G., Sato T. Hemoglobin synthesis in murine virus-induced leukemic cells in vitro: stimulation of erythroid differentiation by dimethyl sulfoxide. Proc Natl Acad Sci U S A. 1971 Feb;68(2):378–382. doi: 10.1073/pnas.68.2.378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. GOLDSTEIN M. N., BURDMAN J. A., JOURNEY L. J. LONG-TERM TISSUE CULTURE OF NEUROBLASTOMAS. II. MORPHOLOGIC EVIDENCE FOR DIFFERENTIATION AND MATURATION. J Natl Cancer Inst. 1964 Jan;32:165–199. [PubMed] [Google Scholar]
  11. Hicks R. M., Wakefield J. S., Chowaniec J. Letter: Co-carcinogenic action of saccharin in the chemical induction of bladder cancer. Nature. 1973 Jun 8;243(5406):347–349. doi: 10.1038/243347a0. [DOI] [PubMed] [Google Scholar]
  12. Ito N., Hananouchi M., Sugihara S., Shirai T., Tsuda H. Reversibility and irreversibility of liver tumors in mice induced by the alpha isomer of 1,2,3,4,5,6-hexachlorocyclohexane. Cancer Res. 1976 Jul;36(7 Pt 1):2227–2234. [PubMed] [Google Scholar]
  13. Jensen H. M., Rice J. R., Wellings S. R. Preneoplastic lesions in the human breast. Science. 1976 Jan 23;191(4224):295–297. doi: 10.1126/science.1246614. [DOI] [PubMed] [Google Scholar]
  14. KLEINSMITH L. J., PIERCE G. B., Jr MULTIPOTENTIALITY OF SINGLE EMBRYONAL CARCINOMA CELLS. Cancer Res. 1964 Oct;24:1544–1551. [PubMed] [Google Scholar]
  15. Kitagawa T., Pitot H. C. The regulation of serine dehydratase and glucose-6-phosphatase in hyperplastic nodules of rat liver during diethylnitrosamine and N-2-fluorenylacetamide feeding. Cancer Res. 1975 Apr;35(4):1075–1084. [PubMed] [Google Scholar]
  16. Mark J. Rous sarcomas in mice: the chromosomal progression in primary tumours. Eur J Cancer. 1969 Nov;5(5):307–315. doi: 10.1016/0014-2964(69)90110-8. [DOI] [PubMed] [Google Scholar]
  17. Markert C. L. Neoplasia: a disease of cell differentiation. Cancer Res. 1968 Sep;28(9):1908–1914. [PubMed] [Google Scholar]
  18. McBurney M. W. Chimeric mice derived from normal embryos injected with teratocarcinoma cells. Am J Pathol. 1977 Dec;89(3):685–686. [PMC free article] [PubMed] [Google Scholar]
  19. Medina D. Preneoplastic lesions in murine mammary cancer. Cancer Res. 1976 Jul;36(7 Pt 2):2589–2595. [PubMed] [Google Scholar]
  20. Mintz B., Illmensee K. Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3585–3589. doi: 10.1073/pnas.72.9.3585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mitelman F., Levan G., Brandt L. Highly malignant cells with normal karyotype in G-banding. Hereditas. 1975;80(2):291–293. doi: 10.1111/j.1601-5223.1975.tb01527.x. [DOI] [PubMed] [Google Scholar]
  22. Murray R. K., Khairallah L., Ragland W., Pitot H. C. The biochemical morphology and morphogenesis of hepatomas. Int Rev Exp Pathol. 1968;6:229–283. [PubMed] [Google Scholar]
  23. NANDI S., BERN H. A. Effect of hormone on mammary-tumor development from transplanted hyperplastic alveolar nodules in hypophysectomized-ovariectomized-adrenalectomized C3H/Crgl mice. J Natl Cancer Inst. 1961 Jul;27:173–185. [PubMed] [Google Scholar]
  24. Nowell P. C., Morris H. P., Potter V. R. Chromosomes of "minimal deviation" hepatomas and some other transplantable rat tumors. Cancer Res. 1967 Sep;27(9):1565–1579. [PubMed] [Google Scholar]
  25. Papaioannou V. E., McBurney M. W., Gardner R. L., Evans M. J. Fate of teratocarcinoma cells injected into early mouse embryos. Nature. 1975 Nov 6;258(5530):70–73. doi: 10.1038/258070a0. [DOI] [PubMed] [Google Scholar]
  26. Peraino C., Fry R. J., Staffeldt E., Kisieleski W. E. Effects of varying the exposure to phenobarbital on its enhancement of 2-acetylaminofluorene-induced hepatic tumorigenesis in the rat. Cancer Res. 1973 Nov;33(11):2701–2705. [PubMed] [Google Scholar]
  27. Pierce G. B., Johnson L. D. Differentiation and cancer. In Vitro. 1971 Nov-Dec;7(3):140–145. doi: 10.1007/BF02617957. [DOI] [PubMed] [Google Scholar]
  28. Rabes H. M., Scholze P., Jantsch B. Growth kinetics of diethylnitrosamine-induced, enzyme-deficient "preneoplastic" liver cell populations in vivo and in vitro. Cancer Res. 1972 Nov;32(11):2577–2586. [PubMed] [Google Scholar]
  29. SEILERN-ASPANG F., KRATOCHWIL K. Induction and differentiation of an epithelial tumour in the newt (Triturus cristatus). J Embryol Exp Morphol. 1962 Sep;10:337–356. [PubMed] [Google Scholar]
  30. Scherer E., Emmelot P. Kinetics of induction and growth of precancerous liver-cell foci, and liver tumour formation by diethylnitrosamine in the rat. Eur J Cancer. 1975 Oct;11(10):689–696. doi: 10.1016/0014-2964(75)90042-0. [DOI] [PubMed] [Google Scholar]
  31. Scherer E., Hoffmann M., Emmelot P., Friedrich-Freksa M. Quantitative study on foci of altered liver cells induced in the rat by a single dose of diethylnitrosamine and partial hepatectomy. J Natl Cancer Inst. 1972 Jul;49(1):93–106. [PubMed] [Google Scholar]
  32. Scherer E., Hoffmann M. Probable clonal genesis of cellular islands induced in rat liver by diethylnitrosamine. Eur J Cancer. 1971 Aug;7(4):369–371. doi: 10.1016/0014-2964(71)90083-1. [DOI] [PubMed] [Google Scholar]
  33. Silagi S. Reversible suppression of malignancy and differentiation of melanoma cells. Am J Pathol. 1977 Dec;89(3):671–684. [PMC free article] [PubMed] [Google Scholar]
  34. Sinha D., Dao T. L. Hyperplastic alveolar nodules of the rat mammary gland: tumor-producing capability in vivo and in vitro. Cancer Lett. 1977 Jan;2(3):153–160. doi: 10.1016/s0304-3835(77)80005-0. [DOI] [PubMed] [Google Scholar]
  35. Squire R. A., Levitt M. H. Report of a workshop on classification of specific hepatocellular lesions in rats. Cancer Res. 1975 Nov;35(11 Pt 1):3214–3223. [PubMed] [Google Scholar]
  36. Turgeon R., Wood H. N., Braun A. C. Studies on the recovery of crown gall tumor cells. Proc Natl Acad Sci U S A. 1976 Oct;73(10):3562–3564. doi: 10.1073/pnas.73.10.3562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Yanai R., Nagasawa H. Inhibition of mammary tumorigenesis by ergot alkaloids and promotion of mammary tumorigenesis by pituitary isografts in adreno-ovariectomized mice. J Natl Cancer Inst. 1972 Mar;48(3):715–719. [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES