Abstract
1. Neurones in the region of the hypothalamic paraventricular nucleus (PVN) of the rat were studied with intracellular recording in the coronal slice preparation. Three types of hypothalamic neurones were distinguished according to their membrane properties and anatomical positions. Lucifer Yellow or ethidium bromide was injected intracellularly to determine the morphology of some recorded cells. 2. The most distinctive electrophysiological characteristic was the low-threshold depolarizing potentials which were totally absent in type I neurones, present but variable in type II neurones and very conspicuous in type III neurones. Type II neurones generally showed relatively small low-threshold depolarizations (26.5 +/- 2.2 mV) which generated at most one to two action potentials. Type III neurones, on the other hand, generated large low-threshold potentials (40.3 +/- 2.8 mV) which gave rise to bursts of three to six fast action potentials. Deinactivation of the low-threshold conductance in both type II and type III neurones was voltage- and time-dependent. Low-threshold potentials persisted in TTX (1-3 microM) but were blocked by solutions containing low Ca2+ (0.2 mM) and Cd2+ (0.5 mM), suggesting they were Ca(2+)-dependent. 3. Type I neurones had a significantly shorter membrane time constant (14.5 +/- 1.7 ms) than those of type II (21.6 +/- 1.7 ms) and type III neurones (33.8 +/- 4.4 ms). Input resistance and resting membrane potential did not differ significantly among the cell groups. 4. Current-voltage (I-V) relations were significantly different among the three cell types. Type I neurones had linear I-V relations to -120 mV, while type III neurones all showed marked anomalous rectification. I-V relations among type II neurones were more heterogeneous, although most (75%) had linear I-V curves to about -90 to -100 mV, inward rectification appearing at more negative potentials. 5. Type I neurones generated fast action potentials of relatively large amplitude (64.2 +/- 1.1 mV, threshold to peak) and long duration (1.1 +/- 0.1 ms, measured at half-amplitude); the longer duration was due to a shoulder on the falling phase of the spike. Type II neurones had large spikes (66.5 +/- 1.6 mV) of shorter duration (0.9 +/- 0.1 ms) with no shoulder. Type III neurones had relatively small spikes (56.1 +/- 2.2 mV) of short duration (0.8 +/- 0.1 ms) with no shoulder. 6. The three cell populations showed different patterns of repetitive firing in response to depolarizing current pulses. Type I neurones often generated spike trains with a delayed onset and little spike-frequency adaptation.(ABSTRACT TRUNCATED AT 400 WORDS)
Full text
PDF






















Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aghajanian G. K., Vandermaelen C. P. Intracellular identification of central noradrenergic and serotonergic neurons by a new double labeling procedure. J Neurosci. 1982 Dec;2(12):1786–1792. doi: 10.1523/JNEUROSCI.02-12-01786.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Andrew R. D., Dudek F. E. Analysis of intracellularly recorded phasic bursting by mammalian neuroendocrine cells. J Neurophysiol. 1984 Mar;51(3):552–566. doi: 10.1152/jn.1984.51.3.552. [DOI] [PubMed] [Google Scholar]
- Andrew R. D., Dudek F. E. Burst discharge in mammalian neuroendocrine cells involves an intrinsic regenerative mechanism. Science. 1983 Sep 9;221(4615):1050–1052. doi: 10.1126/science.6879204. [DOI] [PubMed] [Google Scholar]
- Andrew R. D., Dudek F. E. Intrinsic inhibition in magnocellular neuroendocrine cells of rat hypothalamus. J Physiol. 1984 Aug;353:171–185. doi: 10.1113/jphysiol.1984.sp015330. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Andrew R. D., Dudek F. E. Spike broadening in magnocellular neuroendocrine cells of rat hypothalamic slices. Brain Res. 1985 May 13;334(1):176–179. doi: 10.1016/0006-8993(85)90583-9. [DOI] [PubMed] [Google Scholar]
- Andrew R. D. Endogenous bursting by rat supraoptic neuroendocrine cells is calcium dependent. J Physiol. 1987 Mar;384:451–465. doi: 10.1113/jphysiol.1987.sp016463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Armstrong W. E., Warach S., Hatton G. I., McNeill T. H. Subnuclei in the rat hypothalamic paraventricular nucleus: a cytoarchitectural, horseradish peroxidase and immunocytochemical analysis. Neuroscience. 1980;5(11):1931–1958. doi: 10.1016/0306-4522(80)90040-8. [DOI] [PubMed] [Google Scholar]
- Bourque C. W. Calcium-dependent spike after-current induces burst firing in magnocellular neurosecretory cells. Neurosci Lett. 1986 Oct 8;70(2):204–209. doi: 10.1016/0304-3940(86)90464-7. [DOI] [PubMed] [Google Scholar]
- Bourque C. W., Randle J. C., Renaud L. P. Calcium-dependent potassium conductance in rat supraoptic nucleus neurosecretory neurons. J Neurophysiol. 1985 Dec;54(6):1375–1382. doi: 10.1152/jn.1985.54.6.1375. [DOI] [PubMed] [Google Scholar]
- Bourque C. W., Renaud L. P. Activity dependence of action potential duration in rat supraoptic neurosecretory neurones recorded in vitro. J Physiol. 1985 Jun;363:429–439. doi: 10.1113/jphysiol.1985.sp015720. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bourque C. W., Renaud L. P. Calcium-dependent action potentials in rat supraoptic neurosecretory neurones recorded in vitro. J Physiol. 1985 Jun;363:419–428. doi: 10.1113/jphysiol.1985.sp015719. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bourque C. W. Transient calcium-dependent potassium current in magnocellular neurosecretory cells of the rat supraoptic nucleus. J Physiol. 1988 Mar;397:331–347. doi: 10.1113/jphysiol.1988.sp017004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burlhis T. M., Aghajanian G. K. Pacemaker potentials of serotonergic dorsal raphe neurons: contribution of a low-threshold Ca2+ conductance. Synapse. 1987;1(6):582–588. doi: 10.1002/syn.890010611. [DOI] [PubMed] [Google Scholar]
- Chan-Palay V., Záborszky L., Köhler C., Goldstein M., Palay S. L. Distribution of tyrosine-hydroxylase-immunoreactive neurons in the hypothalamus of rats. J Comp Neurol. 1984 Aug 20;227(4):467–496. doi: 10.1002/cne.902270403. [DOI] [PubMed] [Google Scholar]
- Cobbett P., Smithson K. G., Hatton G. I. Immunoreactivity to vasopressin- but not oxytocin-associated neurophysin antiserum in phasic neurons of rat hypothalamic paraventricular nucleus. Brain Res. 1986 Jan 1;362(1):7–16. doi: 10.1016/0006-8993(86)91392-2. [DOI] [PubMed] [Google Scholar]
- Dudek F. E., Hatton G. I., Macvicar B. A. Intracellular recordings from the paraventricular nucleus in slices of rat hypothalamus. J Physiol. 1980 Apr;301:101–114. doi: 10.1113/jphysiol.1980.sp013192. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dudek F. E., Tasker J. G., Wuarin J. P. Intrinsic and synaptic mechanisms of hypothalamic neurons studied with slice and explant preparations. J Neurosci Methods. 1989 May;28(1-2):59–69. doi: 10.1016/0165-0270(89)90010-1. [DOI] [PubMed] [Google Scholar]
- Ferreyra H., Kannan H., Koizumi K. Influences of the limbic system on hypothalamo-neurohypophysial system. Brain Res. 1983 Mar 28;264(1):31–45. doi: 10.1016/0006-8993(83)91118-6. [DOI] [PubMed] [Google Scholar]
- Friedman A., Gutnick M. J. Low-threshold calcium electrogenesis in neocortical neurons. Neurosci Lett. 1987 Oct 16;81(1-2):117–122. doi: 10.1016/0304-3940(87)90350-8. [DOI] [PubMed] [Google Scholar]
- Grace A. A., Onn S. P. Morphology and electrophysiological properties of immunocytochemically identified rat dopamine neurons recorded in vitro. J Neurosci. 1989 Oct;9(10):3463–3481. doi: 10.1523/JNEUROSCI.09-10-03463.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hatton G. I., Cobbett P., Salm A. K. Extranuclear axon collaterals of paraventricular neurons in the rat hypothalamus: intracellular staining, immunocytochemistry and electrophysiology. Brain Res Bull. 1985 Feb;14(2):123–132. doi: 10.1016/0361-9230(85)90072-3. [DOI] [PubMed] [Google Scholar]
- Jahnsen H., Llinás R. Electrophysiological properties of guinea-pig thalamic neurones: an in vitro study. J Physiol. 1984 Apr;349:205–226. doi: 10.1113/jphysiol.1984.sp015153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kakucska I., Tappaz M. L., Gaal G., Stoeckel M. E., Makara G. B. GABAergic innervation of somatostatin-containing neurosecretory cells of the anterior periventricular hypothalamic area: a light and electron microscopy double immunolabelling study. Neuroscience. 1988 May;25(2):585–593. doi: 10.1016/0306-4522(88)90260-6. [DOI] [PubMed] [Google Scholar]
- Lebrun C. J., Poulain D. A., Theodosis D. T. The role of the septum in the control of the milk ejection reflex in the rat: effects of lesions and electrical stimulation. J Physiol. 1983 Jun;339:17–31. doi: 10.1113/jphysiol.1983.sp014699. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Llinás R., Yarom Y. Electrophysiology of mammalian inferior olivary neurones in vitro. Different types of voltage-dependent ionic conductances. J Physiol. 1981 Jun;315:549–567. doi: 10.1113/jphysiol.1981.sp013763. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MacVicar B. A., Andrew R. D., Dudek F. E., Hatton G. I. Synaptic inputs and action potentials of magnocellular neuropeptidergic cells: intracellular recording and staining in slices of rat hypothalamus. Brain Res Bull. 1982 Jan;8(1):87–93. doi: 10.1016/0361-9230(82)90031-4. [DOI] [PubMed] [Google Scholar]
- Mason W. T. Electrical properties of neurons recorded from the rat supraoptic nucleus in vitro. Proc R Soc Lond B Biol Sci. 1983 Jan 22;217(1207):141–161. doi: 10.1098/rspb.1983.0003. [DOI] [PubMed] [Google Scholar]
- Mason W. T., Leng G. Complex action potential waveform recorded from supraoptic and paraventricular neurones of the rat: evidence for sodium and calcium spike components at different membrane sites. Exp Brain Res. 1984;56(1):135–143. doi: 10.1007/BF00237449. [DOI] [PubMed] [Google Scholar]
- Meister B., Hökfelt T., Geffard M., Oertel W. Glutamic acid decarboxylase- and gamma-aminobutyric acid-like immunoreactivities in corticotropin-releasing factor-containing parvocellular neurons of the hypothalamic paraventricular nucleus. Neuroendocrinology. 1988 Nov;48(5):516–526. doi: 10.1159/000125058. [DOI] [PubMed] [Google Scholar]
- Minami T., Oomura Y., Sugimori M. Ionic basis for the electroresponsiveness of guinea-pig ventromedial hypothalamic neurones in vitro. J Physiol. 1986 Nov;380:145–156. doi: 10.1113/jphysiol.1986.sp016277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Poulain D. A., Wakerley J. B. Electrophysiology of hypothalamic magnocellular neurones secreting oxytocin and vasopressin. Neuroscience. 1982 Apr;7(4):773–808. doi: 10.1016/0306-4522(82)90044-6. [DOI] [PubMed] [Google Scholar]
- Poulain P., Carette B. Low-threshold calcium spikes in hypothalamic neurons recorded near the paraventricular nucleus in vitro. Brain Res Bull. 1987 Oct;19(4):453–460. doi: 10.1016/0361-9230(87)90149-3. [DOI] [PubMed] [Google Scholar]
- Randle J. C., Bourque C. W., Renaud L. P. Serial reconstruction of Lucifer yellow-labeled supraoptic nucleus neurons in perfused rat hypothalamic explants. Neuroscience. 1986 Feb;17(2):453–467. doi: 10.1016/0306-4522(86)90259-9. [DOI] [PubMed] [Google Scholar]
- Rho J. H., Swanson L. W. A morphometric analysis of functionally defined subpopulations of neurons in the paraventricular nucleus of the rat with observations on the effects of colchicine. J Neurosci. 1989 Apr;9(4):1375–1388. doi: 10.1523/JNEUROSCI.09-04-01375.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sawchenko P. E., Swanson L. W. Immunohistochemical identification of neurons in the paraventricular nucleus of the hypothalamus that project to the medulla or to the spinal cord in the rat. J Comp Neurol. 1982 Mar 1;205(3):260–272. doi: 10.1002/cne.902050306. [DOI] [PubMed] [Google Scholar]
- Sawchenko P. E., Swanson L. W. The organization of forebrain afferents to the paraventricular and supraoptic nuclei of the rat. J Comp Neurol. 1983 Aug 1;218(2):121–144. doi: 10.1002/cne.902180202. [DOI] [PubMed] [Google Scholar]
- Silverman A. J., Oldfield B. J. Synaptic input to vasopressin neurons of the paraventricular nucleus (PVN). Peptides. 1984;5 (Suppl 1):139–150. doi: 10.1016/0196-9781(84)90272-9. [DOI] [PubMed] [Google Scholar]
- Stafstrom C. E., Schwindt P. C., Chubb M. C., Crill W. E. Properties of persistent sodium conductance and calcium conductance of layer V neurons from cat sensorimotor cortex in vitro. J Neurophysiol. 1985 Jan;53(1):153–170. doi: 10.1152/jn.1985.53.1.153. [DOI] [PubMed] [Google Scholar]
- Steriade M., Deschenes M. The thalamus as a neuronal oscillator. Brain Res. 1984 Nov;320(1):1–63. doi: 10.1016/0165-0173(84)90017-1. [DOI] [PubMed] [Google Scholar]
- Swaab D. F., Pool C. W., Nijveldt F. Immunofluorescence of vasopressin and oxytocin in the rat hypothalamo-neurohypophypopseal system. J Neural Transm. 1975;36(3-4):195–215. doi: 10.1007/BF01253126. [DOI] [PubMed] [Google Scholar]
- Swanson L. W., Kuypers H. G. The paraventricular nucleus of the hypothalamus: cytoarchitectonic subdivisions and organization of projections to the pituitary, dorsal vagal complex, and spinal cord as demonstrated by retrograde fluorescence double-labeling methods. J Comp Neurol. 1980 Dec 1;194(3):555–570. doi: 10.1002/cne.901940306. [DOI] [PubMed] [Google Scholar]
- Swanson L. W., Sawchenko P. E. Hypothalamic integration: organization of the paraventricular and supraoptic nuclei. Annu Rev Neurosci. 1983;6:269–324. doi: 10.1146/annurev.ne.06.030183.001413. [DOI] [PubMed] [Google Scholar]
- Tappaz M. L., Bosler O., Paut L., Berod A. Glutamate decarboxylase-immunoreactive boutons in synaptic contacts with hypothalamic dopaminergic cells: a light and electron microscopy study combining immunocytochemistry and radioautography. Neuroscience. 1985 Sep;16(1):111–122. doi: 10.1016/0306-4522(85)90050-8. [DOI] [PubMed] [Google Scholar]
- Theodosis D. T., Paut L., Tappaz M. L. Immunocytochemical analysis of the GABAergic innervation of oxytocin- and vasopressin-secreting neurons in the rat supraoptic nucleus. Neuroscience. 1986 Sep;19(1):207–222. doi: 10.1016/0306-4522(86)90016-3. [DOI] [PubMed] [Google Scholar]
- Vandesande F., Dierickx K. Identification of the vasopressin producing and of the oxytocin producing neurons in the hypothalamic magnocellular neurosecretroy system of the rat. Cell Tissue Res. 1975 Dec 2;164(2):153–162. doi: 10.1007/BF00218970. [DOI] [PubMed] [Google Scholar]
- van den Pol A. N. Dual ultrastructural localization of two neurotransmitter-related antigens: colloidal gold-labeled neurophysin-immunoreactive supraoptic neurons receive peroxidase-labeled glutamate decarboxylase- or gold-labeled GABA-immunoreactive synapses. J Neurosci. 1985 Nov;5(11):2940–2954. doi: 10.1523/JNEUROSCI.05-11-02940.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]

