Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1991 Mar;434:627–645. doi: 10.1113/jphysiol.1991.sp018490

The calcium paradox in isolated guinea-pig ventricular myocytes: effects of membrane potential and intracellular sodium.

G C Rodrigo 1, R A Chapman 1
PMCID: PMC1181438  PMID: 2023134

Abstract

1. Guinea-pig ventricular myocytes, isolated enzymatically without the aid of special media, show a similar sensitivity to the calcium paradox as Langendorff-perfused hearts. 2. Measurement of the intracellular activities of Na+ and Ca2+ ions, with a suction-type ion-sensitive microelectrode at rest, during calcium depletion and during inhibition of the Na+ pump (under both current and voltage clamp) yield values similar to those obtained from multicellular preparations and from isolated myocytes by other means. 3. In voltage-clamped myocytes bathed by media free of divalent cations, an inward sodium current that flows through the L-type Ca2+ channels, the rate of rise of aiNa and the strength of the contraction induced by return to normal Tyrode solution, show a similar bell-shaped dependence on the membrane potential during the period of Ca2+ deprivation. 4. The rise in aiNa that occurs in Ca(2+)-free, Mg(2+)-free media, induces an outward current which is composed of currents due to activation of the Na+ pump and K+ channels. 5. On Ca2+ repletion the loading of the cells with Ca2+ does not generate an inward current and the contracture can be reduced, in a dose-dependent way, by the introduction of BAPTA into the sarcoplasm from the solution in the voltage electrode. When [Ca2+]i is buffered by added BAPTA, the estimated amount of Ca2+ which can enter on Ca2+ repletion is sufficient to bind up to 10 mM of the BAPTA. This change in concentration is similar to that expected from the rise and fall in aiNa, seen on Ca2+ depletion and repletion, if a 3 Na+:1 Ca2+ exchange is responsible for the Ca2+ influx. 6. These data offer support for the so-called intracellular sodium hypothesis for the origin of the calcium paradox in the heart. As the effects of Ca2+ repletion can be prevented by clamping the membrane potential so that aiNa does not rise, the contribution of the other effects of Ca2+ depletion to the initiation of the calcium paradox would seem to be less important.

Full text

PDF
627

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Almers W., McCleskey E. W., Palade P. T. A non-selective cation conductance in frog muscle membrane blocked by micromolar external calcium ions. J Physiol. 1984 Aug;353:565–583. doi: 10.1113/jphysiol.1984.sp015351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bers D. M., Ellis D. Intracellular calcium and sodium activity in sheep heart Purkinje fibres. Effect of changes of external sodium and intracellular pH. Pflugers Arch. 1982 Apr;393(2):171–178. doi: 10.1007/BF00582941. [DOI] [PubMed] [Google Scholar]
  3. Chapman R. A., Fozzard H. A., Friedlander I. R., January C. T. Effects of Ca2+/Mg2+ removal on aiNa, aiK, and tension in cardiac Purkinje fibers. Am J Physiol. 1986 Dec;251(6 Pt 1):C920–C927. doi: 10.1152/ajpcell.1986.251.6.C920. [DOI] [PubMed] [Google Scholar]
  4. Chapman R. A., Rodrigo G. C., Tunstall J., Yates R. J., Busselen P. Calcium paradox of the heart: a role for intracellular sodium ions. Am J Physiol. 1984 Nov;247(5 Pt 2):H874–H879. doi: 10.1152/ajpheart.1984.247.5.H874. [DOI] [PubMed] [Google Scholar]
  5. Chapman R. A. Sodium/calcium exchange and intracellular calcium buffering in ferret myocardium: an ion-sensitive micro-electrode study. J Physiol. 1986 Apr;373:163–179. doi: 10.1113/jphysiol.1986.sp016040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chapman R. A., Tunstall J. The calcium paradox of the heart. Prog Biophys Mol Biol. 1987;50(2):67–96. doi: 10.1016/0079-6107(87)90004-6. [DOI] [PubMed] [Google Scholar]
  7. Eisner D. A., Lederer W. J., Vaughan-Jones R. D. The control of tonic tension by membrane potential and intracellular sodium activity in the sheep cardiac Purkinje fibre. J Physiol. 1983 Feb;335:723–743. doi: 10.1113/jphysiol.1983.sp014560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ganote C. E., Sims M. A., VanderHeide R. S. Mechanism of enzyme release in the calcium paradox. Eur Heart J. 1983 Dec;4 (Suppl H):63–71. doi: 10.1093/eurheartj/4.suppl_h.63. [DOI] [PubMed] [Google Scholar]
  9. Goshima K., Wakabayashi S., Masuda A. Ionic mechanism of morphological changes of cultured myocardial cells on successive incubation in media without and with Ca2+. J Mol Cell Cardiol. 1980 Nov;12(11):1135–1157. doi: 10.1016/0022-2828(80)90062-0. [DOI] [PubMed] [Google Scholar]
  10. Hess P., Tsien R. W. Mechanism of ion permeation through calcium channels. 1984 May 31-Jun 6Nature. 309(5967):453–456. doi: 10.1038/309453a0. [DOI] [PubMed] [Google Scholar]
  11. Imoto Y., Ehara T., Goto M. Calcium channel currents in isolated guinea-pig ventricular cells superfused with Ca-free EGTA solution. Jpn J Physiol. 1985;35(6):917–932. doi: 10.2170/jjphysiol.35.917. [DOI] [PubMed] [Google Scholar]
  12. January C. T., Fozzard H. A. The effects of membrane potential, extracellular potassium, and tetrodotoxin on the intracellular sodium ion activity of sheep cardiac muscle. Circ Res. 1984 Jun;54(6):652–665. doi: 10.1161/01.res.54.6.652. [DOI] [PubMed] [Google Scholar]
  13. Lambert M. R., Johnson J. D., Lamka K. G., Brierley G. P., Altschuld R. A. Intracellular free Ca2+ and the hypercontracture of adult rat heart myocytes. Arch Biochem Biophys. 1986 Mar;245(2):426–435. doi: 10.1016/0003-9861(86)90234-1. [DOI] [PubMed] [Google Scholar]
  14. Lee C. O. Ionic activities in cardiac muscle cells and application of ion-selective microelectrodes. Am J Physiol. 1981 Oct;241(4):H459–H478. doi: 10.1152/ajpheart.1981.241.4.H459. [DOI] [PubMed] [Google Scholar]
  15. Mitra R., Morad M. A uniform enzymatic method for dissociation of myocytes from hearts and stomachs of vertebrates. Am J Physiol. 1985 Nov;249(5 Pt 2):H1056–H1060. doi: 10.1152/ajpheart.1985.249.5.H1056. [DOI] [PubMed] [Google Scholar]
  16. Nayler W. G., Elz J. S., Perry S. E., Daly M. J. The biochemistry of uncontrolled calcium entry. Eur Heart J. 1983 Dec;4 (Suppl H):29–41. doi: 10.1093/eurheartj/4.suppl_h.29. [DOI] [PubMed] [Google Scholar]
  17. Piper H. M., Spahr R., Hütter J. F., Spieckermann P. G. The calcium and the oxygen paradox: non-existent on the cellular level. Basic Res Cardiol. 1985;80 (Suppl 2):159–163. [PubMed] [Google Scholar]
  18. Rodrigo G. C., Chapman R. A. A novel resin-filled ion-sensitive micro-electrode suitable for intracellular measurements in isolated cardiac myocytes. Pflugers Arch. 1990 Apr;416(1-2):196–200. doi: 10.1007/BF00370242. [DOI] [PubMed] [Google Scholar]
  19. Rodrigo G. C., Chapman R. A. A sodium-activated potassium current in intact ventricular myocytes isolated from the guinea-pig heart. Exp Physiol. 1990 Nov;75(6):839–842. doi: 10.1113/expphysiol.1990.sp003465. [DOI] [PubMed] [Google Scholar]
  20. Ruigrok T. J. Is an increase of intracellular Na+ during Ca2+ depletion essential for the occurrence of the calcium paradox? J Mol Cell Cardiol. 1990 May;22(5):499–501. doi: 10.1016/0022-2828(90)90951-w. [DOI] [PubMed] [Google Scholar]
  21. Sheu S. S., Fozzard H. A. Transmembrane Na+ and Ca2+ electrochemical gradients in cardiac muscle and their relationship to force development. J Gen Physiol. 1982 Sep;80(3):325–351. doi: 10.1085/jgp.80.3.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Slade A. M., Severs N. J., Powell T., Twist V. W. Isolated calcium-tolerant myocytes and the calcium paradox: an ultrastructural comparison. Eur Heart J. 1983 Dec;4 (Suppl H):113–122. doi: 10.1093/eurheartj/4.suppl_h.113. [DOI] [PubMed] [Google Scholar]
  23. Steadman B. W., Moore K. B., Spitzer K. W., Bridge J. H. A video system for measuring motion in contracting heart cells. IEEE Trans Biomed Eng. 1988 Apr;35(4):264–272. doi: 10.1109/10.1375. [DOI] [PubMed] [Google Scholar]
  24. Tunstall J., Busselen P., Rodrigo G. C., Chapman R. A. Pathways for the movements of ions during calcium-free perfusion and the induction of the 'calcium paradox'. J Mol Cell Cardiol. 1986 Mar;18(3):241–254. doi: 10.1016/s0022-2828(86)80406-0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES