Abstract
We present here direct evidence for the preservation of a transcriptional initiation sequence in a eukaryotic rRNA precursor: the 5'-end group for precursor to 17S rRNA (p17S RNA) from Dictyostelium discoideum is identified as the triphosphate residue pppA-. We also show that mature 5S RNA form Dictyostelium bears a different triphosphate residue, pppG-. In contrast, we find no evidence for more than one phosphate at the 5' end of the 25S rRNA precursor (p25S RNA). These observations indicate that synthesis of the large ribosomal RNAs of Dictyostelium begins with the 5'-terminal sequence of the p17S RNA, and that 5S RNA transcription must be initiated independently, despite the close association of the 5S and rRNA coding segments.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aarstad K., Oyen T. B. On the distribution of 5s RNA cistrons on the genome of Saccharomyces cerevisiae. FEBS Lett. 1975 Mar 1;51(1):227–231. doi: 10.1016/0014-5793(75)80893-3. [DOI] [PubMed] [Google Scholar]
- Aloni Y., Hatlen L. E., Attardi G. Studies of fractionated HeLa cell metaphase chromosomes. II. chromosomal distribution of sites for transfer RNA and 5 s RNA. J Mol Biol. 1971 Mar 28;56(3):555–563. doi: 10.1016/0022-2836(71)90401-3. [DOI] [PubMed] [Google Scholar]
- Batts-Young B., Maizels N., Lodish H. F. Precursors of ribosomal RNA in the cellular slime mold Dictyostelium discoideum. Isolation and characterization. J Biol Chem. 1977 Jun 10;252(11):3952–3960. [PubMed] [Google Scholar]
- Bishop D. H., Claybrook J. R., Spiegelman S. Electrophoretic separation of viral nucleic acids on polyacrylamide gels. J Mol Biol. 1967 Jun 28;26(3):373–387. doi: 10.1016/0022-2836(67)90310-5. [DOI] [PubMed] [Google Scholar]
- Bremer H., Konrad M. W., Gaines K., Stent G. S. Direction of chain growth in enzymic RNA synthesis. J Mol Biol. 1965 Sep;13(2):540–553. doi: 10.1016/s0022-2836(65)80116-4. [DOI] [PubMed] [Google Scholar]
- Brown D. D., Weber C. S. Gene linkage by RNA-DNA hybridization. I. Unique DNA sequences homologous to 4 s RNA, 5 s RNA and ribosomal RNA. J Mol Biol. 1968 Jun 28;34(3):661–680. doi: 10.1016/0022-2836(68)90188-5. [DOI] [PubMed] [Google Scholar]
- Choi Y. C., Busch H. Structural analysis of nucleolar precursors of ribosomal ribonucleic acid. Studies on the 5'-terminal and alkali-resistant dinucleotides of nucleolar high molecular weight ribonucleic acid. J Biol Chem. 1970 Apr 25;245(8):1954–1961. [PubMed] [Google Scholar]
- Clausen T. Measurement of 32P activity in a liquid scintillation counter without the use of scintillator. Anal Biochem. 1968 Jan;22(1):70–73. doi: 10.1016/0003-2697(68)90260-1. [DOI] [PubMed] [Google Scholar]
- Dahlberg J. E. Terminal sequences of bacteriophage RNAs. Nature. 1968 Nov 9;220(5167):548–552. doi: 10.1038/220548a0. [DOI] [PubMed] [Google Scholar]
- Dawid I. B., Wellauer P. K. A reinvestigation of 5' leads to 3' polarity in 40S ribosomal RNA precursor of Xenopus laevis. Cell. 1976 Jul;8(3):443–448. doi: 10.1016/0092-8674(76)90157-4. [DOI] [PubMed] [Google Scholar]
- Erdmann V. A. Structure and function of 5S and 5.8 S RNA. Prog Nucleic Acid Res Mol Biol. 1976;18:45–90. [PubMed] [Google Scholar]
- Fox G. E., Woese C. R. 5S RNA secondary structure. Nature. 1975 Aug 7;256(5517):505–507. doi: 10.1038/256505a0. [DOI] [PubMed] [Google Scholar]
- Frankel G., Cockburn A. F., Kindle K. L., Firtel R. A. Organization of the ribosomal RNA genes of Dictyostelium discoideum. Mapping of the transcribed region. J Mol Biol. 1977 Feb 5;109(4):539–558. doi: 10.1016/s0022-2836(77)80090-9. [DOI] [PubMed] [Google Scholar]
- Ginsburg D., Steitz J. A. The 30 S ribosomal precursor RNA from Escherichia coli. A primary transcript containing 23 S, 16 S, and 5 S sequences. J Biol Chem. 1975 Jul 25;250(14):5647–5654. [PubMed] [Google Scholar]
- Hatlen L. E., Amaldi F., Attardi G. Oligonucleotide pattern after pancreatic ribonuclease digestion and the 3' and 5' termini of 5S ribonucleic acid from HeLa cells. Biochemistry. 1969 Dec;8(12):4989–5005. doi: 10.1021/bi00840a048. [DOI] [PubMed] [Google Scholar]
- Hayes F., Vasseur M., Nikolaev N., Schlessinger D., Sri Widada J., Krol A., Branlant C. Structure of a 30 S pre-ribosomal RNA of E. coli. FEBS Lett. 1975 Aug 1;56(1):85–91. doi: 10.1016/0014-5793(75)80117-7. [DOI] [PubMed] [Google Scholar]
- Hindley J., Page S. M. Nucleotide sequence of yeast 5 S ribosomal RNA. FEBS Lett. 1972 Oct 1;26(1):157–160. doi: 10.1016/0014-5793(72)80563-5. [DOI] [PubMed] [Google Scholar]
- Iwabuchi M., Mizukami Y., Sameshima M. Synthesis of precursor molecules of ribosomal RNA in the cellular slime mold Dictyostelium discoideum. Biochim Biophys Acta. 1971 Feb 11;228(3):693–700. doi: 10.1016/0005-2787(71)90734-9. [DOI] [PubMed] [Google Scholar]
- Jordan B. R., Galling G., Jourdan R. Sequence and conformation of 5 S RNA from Chlorella cytoplasmic ribosomes: comparison with other 5 S RNA molecules. J Mol Biol. 1974 Aug 5;87(2):205–225. doi: 10.1016/0022-2836(74)90144-2. [DOI] [PubMed] [Google Scholar]
- Maitra U., Cohen S. N., Hurwitz J. Specificity of initiation and synthesis of RNA from DNA templates. Cold Spring Harb Symp Quant Biol. 1966;31:113–122. doi: 10.1101/sqb.1966.031.01.018. [DOI] [PubMed] [Google Scholar]
- Maizels N. Dictyostelium 17S, 25S, and 5S rDNAs lie within a 38,000 base pair repeated unit. Cell. 1976 Nov;9(3):431–438. doi: 10.1016/0092-8674(76)90088-x. [DOI] [PubMed] [Google Scholar]
- Nishimura S. Minor components in transfer RNA: their characterization, location, and function. Prog Nucleic Acid Res Mol Biol. 1972;12:49–85. [PubMed] [Google Scholar]
- Pace N. R. Structure and synthesis of the ribosomal ribonucleic acid of prokaryotes. Bacteriol Rev. 1973 Dec;37(4):562–603. doi: 10.1128/br.37.4.562-603.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pardue M. L., Brown D. D., Birnstiel M. L. Location of the genes for 5S ribosomal RNA in Xenopus laevis. Chromosoma. 1973;42(2):191–203. doi: 10.1007/BF00320940. [DOI] [PubMed] [Google Scholar]
- Perry R. P. Processing of RNA. Annu Rev Biochem. 1976;45:605–629. doi: 10.1146/annurev.bi.45.070176.003133. [DOI] [PubMed] [Google Scholar]
- Reeder R. H., Higashinakagawa T., Miller O., Jr The 5' leads to 3' polarity of the Xenopus Ribosomal RNA precursor molecule. Cell. 1976 Jul;8(3):449–454. doi: 10.1016/0092-8674(76)90158-6. [DOI] [PubMed] [Google Scholar]
- Roblin R. The 5'-terminus of bacteriophage R17 RNA: pppGp. J Mol Biol. 1968 Jan 14;31(1):51–61. doi: 10.1016/0022-2836(68)90053-3. [DOI] [PubMed] [Google Scholar]
- Rose J. K. Heterogneeous 5'-terminal structures occur on vesicular stomatitis virus mRNAs. J Biol Chem. 1975 Oct 25;250(20):8098–8104. [PubMed] [Google Scholar]
- Rubin G. M., Sulston J. E. Physical linkage of the 5 S cistrons to the 18 S and 28 S ribosomal RNA cistrons in Saccharomyces cerevisiae. J Mol Biol. 1973 Sep 25;79(3):521–530. doi: 10.1016/0022-2836(73)90403-8. [DOI] [PubMed] [Google Scholar]
- Sakuma K., Kominami R., Muramatsu M., Sugiura M. Conservation of the 5'-terminal nucleotide sequences of ribosomal 18-S RNA in eukaryotes. Differential evolution of large and small ribosomal RNA. Eur J Biochem. 1976 Apr 1;63(2):339–350. doi: 10.1111/j.1432-1033.1976.tb10235.x. [DOI] [PubMed] [Google Scholar]
- Schibler U., Hagenbüchle O., Wyler T., Weber R., Boseley P., Telford J., Birnstiel M. L. The arrangement of 18-S and 28-S ribosomal ribonucleic acids within the 40-S precursor molecule of Xenopus laevis. Eur J Biochem. 1976 Sep 15;68(2):471–480. doi: 10.1111/j.1432-1033.1976.tb10834.x. [DOI] [PubMed] [Google Scholar]
- Slack J. M., Loening U. E. 5'-Ends of ribosomal and ribosomal precursor RNAs form Xenopus laevis. Eur J Biochem. 1974 Mar 15;43(1):59–67. doi: 10.1111/j.1432-1033.1974.tb03384.x. [DOI] [PubMed] [Google Scholar]
- Soave C., Nucca R., Sala E., Viotti A., Galante E. 5-S RNA: investigation of the different extent of phosphorylation at 5'terminus. Eur J Biochem. 1973 Jan 15;32(2):392–400. doi: 10.1111/j.1432-1033.1973.tb02621.x. [DOI] [PubMed] [Google Scholar]
- Tonnesen T., Engberg J., Leick V. Studies on the amount and location of the tRNA and 5-S rRNA genes in Tetrahymena pyriformis GL. Eur J Biochem. 1976 Apr 1;63(2):399–407. doi: 10.1111/j.1432-1033.1976.tb10241.x. [DOI] [PubMed] [Google Scholar]
- Trapman J., Planta R. J. Detailed analysis of the ribosomal RNA synthesis in yeast. Biochim Biophys Acta. 1975 Dec 4;414(2):115–125. doi: 10.1016/0005-2787(75)90214-2. [DOI] [PubMed] [Google Scholar]
- Walker R. T., RajBhandary U. L. Formylatable methionine transfer RNA from Mycoplasma: purification and comparison of partial nucleotide sequences with those of other prokaryotic initiator tRNAs. Nucleic Acids Res. 1975 Jan;2(1):61–78. doi: 10.1093/nar/2.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wegnez M., Monier R., Denis H. Sequence heterogeneity of 5 S RNA in Xenopus laevis. FEBS Lett. 1972 Sep 1;25(1):13–20. doi: 10.1016/0014-5793(72)80443-5. [DOI] [PubMed] [Google Scholar]
- Wimber D. E., Steffensen D. M. Localization of 5S RNA genes on Drosophila chromosomes by RNA-DNA hybridization. Science. 1970 Nov 6;170(3958):639–641. doi: 10.1126/science.170.3958.639. [DOI] [PubMed] [Google Scholar]