Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jun 7;64(Pt 7):m874–m875. doi: 10.1107/S1600536808016309

Propane-1,2-diammonium bis­(pyridine-2,6-dicarboxyl­ato-κ3 O,N,O′)nickelate(II) tetra­hydrate

Hossein Aghabozorg a,*, Mohammad Heidari a, Sara Bagheri b, Jafar Attar Gharamaleki a, Mohammad Ghadermazi c
PMCID: PMC2961796  PMID: 21202746

Abstract

The reaction of nickel(II) nitrate hexa­hydrate, propane-1,2-diamine and pyridine-2,6-dicarboxylic acid in a 1:2:2 molar ratio in aqueous solution resulted in the formation of the title compound, (C3H12N2)[Ni(C7H3NO4)2]·4H2O or (p-1,2-daH2)[Ni(pydc)2]·4H2O (where p-1,2-da is propane-1,2-diamine and pydcH2 is pyridine-2,6-dicarboxylic acid). The geometry of the resulting NiN2O4 coordination can be described as distorted octa­hedral. Considerable C=O⋯π stacking inter­actions are observed between the carboxyl­ate C=O groups and the pyridine rings of the (pydc)2− fragments, with O⋯π distances of 3.1563 (12) and 3.2523 (12) Å and C=O⋯π angles of 95.14 (8) and 94.64 (8)°. In the crystal structure, a wide range of non-covalent inter­actions, consisting of hydrogen bonding [O—H⋯O, N—H⋯O and C—H⋯O, with DA distances ranging from 2.712 (2) to 3.484 (2) Å], ion pairing, π–π [centroid-to-centroid distance = 3.4825 (8) Å] and C=O⋯π stacking, connect the various components to form a supra­molecular structure.

Related literature

For related literature, see: Aghabozorg et al. (2007); Aghabozorg, Ghadermazi & Attar Gharamaleki (2006); Aghabozorg, Ghadermazi & Ramezanipour (2006); Aghabozorg, Heidari et al. (2008); Aghabozorg, Manteghi & Sheshmani (2008).graphic file with name e-64-0m874-scheme1.jpg

Experimental

Crystal data

  • (C3H12N2)[Ni(C7H3NO4)2]·4H2O

  • M r = 537.13

  • Orthorhombic, Inline graphic

  • a = 20.7598 (6) Å

  • b = 8.2582 (2) Å

  • c = 12.7242 (4) Å

  • V = 2181.42 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.96 mm−1

  • T = 100 (2) K

  • 0.26 × 0.22 × 0.11 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.781, T max = 0.898

  • 36654 measured reflections

  • 6379 independent reflections

  • 6016 reflections with I > 2σ(I)

  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.023

  • wR(F 2) = 0.059

  • S = 1.01

  • 6379 reflections

  • 310 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.33 e Å−3

  • Absolute structure: Flack (1983), 2846 Friedel pairs

  • Flack parameter: 0.004 (7)

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808016309/su2054sup1.cif

e-64-0m874-sup1.cif (25.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808016309/su2054Isup2.hkl

e-64-0m874-Isup2.hkl (312.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O4W 0.82 1.97 2.788 (2) 173
O1W—H1WB⋯O2 0.82 2.47 3.109 (2) 135
O1W—H1WB⋯O6 0.82 2.21 2.912 (2) 144
O2W—H2WA⋯O3 0.82 2.21 2.759 (2) 125
N3—H3B⋯O4i 0.91 1.90 2.795 (2) 168
N3—H3C⋯O1W 0.91 1.91 2.763 (2) 155
N3—H3D⋯O8ii 0.91 1.88 2.783 (2) 176
O2W—H2WB⋯O1iii 0.82 2.07 2.849 (2) 160
N4—H4B⋯O3Wii 0.91 1.92 2.812 (2) 165
N4—H4C⋯O1 0.91 1.92 2.813 (2) 168
N4—H4D⋯O4Wiv 0.91 1.91 2.777 (2) 160
O3W—H3WA⋯O8 0.82 2.03 2.771 (2) 149
O3W—H3WB⋯O4v 0.82 1.99 2.787 (2) 166
O4W—H4WA⋯O2Wi 0.82 1.99 2.749 (2) 153
O4W—H4WB⋯O5 0.82 1.90 2.712 (2) 171
C10—H10A⋯O6vi 0.95 2.54 3.289 (2) 136
C11—H11A⋯O1Wvi 0.95 2.58 3.484 (2) 160
C15—H15B⋯O5vii 0.99 2.30 3.268 (2) 164
C16—H16A⋯O7ii 1.00 2.49 3.291 (2) 137

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

supplementary crystallographic information

Comment

Recently, we have defined a plan to prepare water soluble proton transfer compounds as novel self-assembled systems that can function as suitable ligands in the synthesis of metal complexes. In this regard, we have reported cases in which proton transfers from pyridine-2,6-dicarboxylic acid (pydcH2), and benzene-1,2,4,5-tetracarboxylic acid (btcH4), to propane-1,3-diamine (pda), propane-1,2-diamine (p-1,2-da) and 1,10-phenanthroline, (phen). This work has resulted in the formation of some novel proton transfer compounds such as (pdaH2)(pydc).(pydcH2).2.5H2O (Aghabozorg, Ghadermazi & Ramezanipour, 2006), (pdaH2)2(btc).2H2O (Aghabozorg et al., 2007), (p-1,2-daH2)(pydcH)2.2H2O (Aghabozorg, Heidari et al., 2008) and (phenH)4(btcH3)2(btcH2) (Aghabozorg, Ghadermazi & Attar Gharamaleki, 2006). For more details and related literature see our recent review article (Aghabozorg, Manteghi & Sheshmani, 2008).

The molecular structure and crystal packing diagram of the title compound are presented in Figs. 1 and 2, respectively. The NiII atom is six-coordinated by two pyridine-2,6-dicarboxylate, or (pydc)2-, groups, i.e. each (pydc)2- ligand is coordinated through one pyridine N atom and two carboxylate O atoms. As it can be seen, atoms N1 and N2 of the two (pydc)2- fragments occupy the axial positions, while atoms O2, O3, O6 and O7 form the equatorial plane [with Ni—O distances ranging from 2.1178 (11) to 2.1477 (10) Å]. The N1—Ni1—N2 angle [176.17 (5)°] deviates from linearity. Therefore, the geometry of the resulting NiN2O4 coordination can be described as distorted octahedral. The O2—Ni1—O6 and O3—Ni1—O7 bond angles are equal to 87.26 (4)° and 90.55 (4)°, respectively. On the other hand, the torsion angles O3—Ni1—O7—C14 and O7—Ni1—O3—C7 are 92.68 (10)° and 95.05 (10)°, respectively, indicating that the two (pydc)2- units are almost perpendicular to one another. The O2—Ni1—O3 [155.41 (4)°] and O6—Ni1—O7 [155.96 (4)°] bond angles indicate that the four carboxylate groups of the two dianions are oriented in a flattened tetrahedral arrangement around the Ni1 atom.

It is interesting to note that the crystal packing shows a layered structure. The space between the layers of [Ni(pydc)2]2- units is occupied by (p-1,2-daH2)2+ cations and uncoordinated water molecules, which bridge the [Ni(pydc)2]2- units via hydrogen bonds (Fig 3 and Table 1). A noticeable feature of the title compound is the presence of C═O···π stacking interactions, between C═O groups of the carboxylate with aromatic rings of pyridine-2,6-dicarboxylate, with O···π distances of 3.1563 (12) Å for C13–O5···Cg1 (1/2 - x, 1/2 + y, -1/2 + z) and 3.2523 (12) Å for C6–O1···Cg2 (1/2 - x, -1/2 + y, 1/2 + z) [Cg1 and Cg2 are the centroids of the rings N1/C1–C5 and N2/C8–C12, respectively]. There is also considerable π–π stacking interactions between the two aromatic rings of the (pydc)2- units, with a centorid–centroid distance of 3.4825 (8) Å (1/2 - x, -1/2 + y, -1/2 + z) [see Fig. 4]. In the crystal structure, a wide range of non-covalent interactions consisting of hydrogen bonding (of the type O—H···O, N—H···O and C—H···O with D···A ranging from 2.712 (2) Å to 3.484 (2) Å), ion pairing, π···π and C═ O···π stacking connect the various components to form a supramolecular structure.

Experimental

An aqueous solution of Ni(NO3)2.6H2O (290 mg, 1 mmol), propane-1,2-diamine (80 mg, 2 mmol) and pyridine-2,6-dicarboxylic acid (360 mg, 2 mmol) was added to each other in a 1:2:2 molar ratio, and the reaction mixture was heated at about 40°C for 5 h. Green crystals of the title compound were obtained from the solution after four weeks at room temperature.

Refinement

The hydrogen atoms of the NH3 groups and the water molecules were located in difference Fourier maps. The H(C) atom positions were included in calculated positions and treated as riding atoms with Uiso(H) = 1.2Ueq(parent C or O atoms) and 1.5Ueq(parent N or C-methyl atoms).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.

Fig. 2.

Fig. 2.

The crystal packing of the title compound as viewed approximately down b, with the hydrogen bonds shown as dashed lines.

Fig. 3.

Fig. 3.

A layered packing diagram of the title compound. The space between the two layers of [Ni(pydc)2]2- fragments is filled with a layer of (p-1,2-daH2)2+ cations and water molecules.

Fig. 4.

Fig. 4.

π–π Stacking interaction between two aromatic rings of (pydc)2- units, with centorid–centroid distance of 3.4825 (8) Å (1/2 - x, -1/2 + y, -1/2 + z); C–O···π Stacking interactions between C═O groups of carboxylate and the aromatic rings of pyridine-2,6-dicarboxylate with O···π distances of 3.1563 (12) Å for C13—O5···Cg1 (1/2 - x, 1/2 + y, -1/2 + z) and 3.2523 (12) Å for C6—O1···Cg2 (1/2 - x, -1/2 + y, 1/2 + z) [Cg1 and Cg2 are the centroids for rings N1/C1–C5 and N2/C8–C12, respectively].

Crystal data

(C3H12N2)[Ni(C7H3NO4)2]·4H2O F000 = 1120
Mr = 537.13 Dx = 1.635 Mg m3
Orthorhombic, Pna21 Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2c -2n Cell parameters from 410 reflections
a = 20.7598 (6) Å θ = 3–29º
b = 8.2582 (2) Å µ = 0.96 mm1
c = 12.7242 (4) Å T = 100 (2) K
V = 2181.42 (11) Å3 Prism, light-green
Z = 4 0.26 × 0.22 × 0.11 mm

Data collection

Bruker APEXII CCD area-detector diffractometer 6379 independent reflections
Radiation source: fine-focus sealed tube 6016 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.035
T = 100(2) K θmax = 30.0º
ω scans θmin = 2.0º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −29→29
Tmin = 0.781, Tmax = 0.898 k = −11→11
36654 measured reflections l = −17→17

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.023   w = 1/[σ2(Fo2) + (0.03P)2 + 0.5P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.059 (Δ/σ)max = 0.001
S = 1.01 Δρmax = 0.34 e Å3
6379 reflections Δρmin = −0.33 e Å3
310 parameters Extinction correction: none
1 restraint Absolute structure: Flack (1983), with how many Friedel pairs?
Primary atom site location: structure-invariant direct methods Flack parameter: 0.004 (7)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.230880 (7) 0.50781 (2) 0.25665 (2) 0.00841 (4)
O1 0.36657 (5) 0.27840 (12) 0.44207 (8) 0.0123 (2)
O2 0.30848 (5) 0.35043 (12) 0.30169 (8) 0.0110 (2)
O3 0.15872 (5) 0.68763 (13) 0.28120 (8) 0.0131 (2)
O4 0.10593 (5) 0.81657 (13) 0.41025 (9) 0.0133 (2)
O5 0.35128 (5) 0.74395 (13) 0.04995 (8) 0.0128 (2)
O6 0.30178 (5) 0.66991 (13) 0.19960 (8) 0.0113 (2)
O7 0.15889 (5) 0.32530 (12) 0.24551 (9) 0.0120 (2)
O8 0.09570 (5) 0.20477 (13) 0.12645 (9) 0.0146 (2)
N1 0.23302 (5) 0.53498 (17) 0.41041 (11) 0.0085 (2)
N2 0.22246 (6) 0.48264 (15) 0.10356 (12) 0.0090 (3)
C1 0.27701 (7) 0.45504 (17) 0.46722 (12) 0.0087 (2)
C2 0.28041 (8) 0.47344 (19) 0.57519 (13) 0.0109 (3)
H2A 0.3120 0.4178 0.6153 0.013*
C3 0.23594 (7) 0.57630 (18) 0.62343 (12) 0.0112 (3)
H3A 0.2371 0.5909 0.6975 0.013*
C4 0.18997 (7) 0.65754 (17) 0.56366 (11) 0.0102 (3)
H4A 0.1593 0.7270 0.5958 0.012*
C5 0.19040 (7) 0.63384 (17) 0.45558 (11) 0.0088 (2)
C6 0.32098 (6) 0.35197 (16) 0.39952 (12) 0.0096 (2)
C7 0.14761 (7) 0.71970 (17) 0.37710 (11) 0.0102 (3)
C8 0.26305 (6) 0.56135 (18) 0.04015 (12) 0.0095 (3)
C9 0.26076 (7) 0.5380 (2) −0.06858 (12) 0.0105 (3)
H9A 0.2901 0.5919 −0.1140 0.013*
C10 0.21417 (7) 0.43328 (18) −0.10826 (11) 0.0121 (3)
H10A 0.2116 0.4147 −0.1818 0.015*
C11 0.17109 (7) 0.35526 (17) −0.04071 (12) 0.0110 (3)
H11A 0.1385 0.2857 −0.0673 0.013*
C12 0.17748 (6) 0.38260 (17) 0.06599 (12) 0.0097 (2)
C13 0.30969 (6) 0.66803 (17) 0.10021 (12) 0.0101 (3)
C14 0.14033 (7) 0.29812 (17) 0.15243 (12) 0.0108 (3)
N3 0.54006 (6) 0.43977 (15) 0.30200 (10) 0.0123 (2)
H3B 0.5651 0.5201 0.3289 0.018*
H3C 0.5010 0.4809 0.2837 0.018*
H3D 0.5595 0.3971 0.2442 0.018*
N4 0.44676 (5) 0.16524 (15) 0.27970 (10) 0.0118 (2)
H4B 0.4502 0.2393 0.2270 0.018*
H4C 0.4162 0.1982 0.3263 0.018*
H4D 0.4354 0.0676 0.2523 0.018*
C15 0.53120 (7) 0.31041 (17) 0.38271 (12) 0.0130 (3)
H15A 0.4983 0.3459 0.4340 0.016*
H15B 0.5722 0.2949 0.4212 0.016*
C16 0.51052 (7) 0.14977 (17) 0.33504 (12) 0.0113 (2)
H16A 0.5437 0.1154 0.2827 0.014*
C17 0.50526 (8) 0.01962 (18) 0.41937 (13) 0.0174 (3)
H17A 0.4940 −0.0840 0.3866 0.026*
H17B 0.4718 0.0499 0.4700 0.026*
H17C 0.5466 0.0091 0.4558 0.026*
O1W 0.42220 (5) 0.59529 (14) 0.30653 (9) 0.0169 (2)
H1WA 0.4295 0.6786 0.2735 0.020*
H1WB 0.3837 0.5823 0.2945 0.020*
O2W 0.06395 (6) 0.74698 (19) 0.13415 (10) 0.0297 (3)
H2WA 0.0821 0.6693 0.1612 0.036*
H2WB 0.0882 0.7755 0.0867 0.036*
O3W −0.03481 (5) 0.15335 (15) 0.09506 (9) 0.0199 (2)
H3WA 0.0027 0.1743 0.0800 0.024*
H3WB −0.0520 0.1482 0.0372 0.024*
O4W 0.44262 (5) 0.86620 (13) 0.18005 (9) 0.0158 (2)
H4WA 0.4731 0.8280 0.1474 0.019*
H4WB 0.4180 0.8294 0.1357 0.019*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.00786 (7) 0.01104 (7) 0.00634 (7) 0.00044 (6) −0.00030 (7) −0.00050 (7)
O1 0.0097 (4) 0.0146 (5) 0.0125 (5) 0.0032 (4) −0.0006 (4) 0.0011 (4)
O2 0.0123 (4) 0.0127 (5) 0.0082 (5) 0.0015 (4) −0.0003 (4) −0.0013 (4)
O3 0.0121 (5) 0.0174 (5) 0.0097 (5) 0.0037 (4) −0.0006 (4) 0.0003 (4)
O4 0.0125 (5) 0.0146 (5) 0.0129 (5) 0.0047 (4) 0.0020 (4) 0.0016 (4)
O5 0.0110 (5) 0.0154 (5) 0.0121 (5) −0.0025 (4) 0.0019 (4) −0.0005 (4)
O6 0.0106 (5) 0.0139 (5) 0.0092 (5) −0.0009 (4) −0.0003 (4) −0.0009 (4)
O7 0.0115 (4) 0.0165 (4) 0.0081 (5) −0.0015 (3) 0.0002 (4) 0.0010 (4)
O8 0.0131 (5) 0.0173 (5) 0.0134 (5) −0.0049 (4) −0.0003 (4) −0.0013 (4)
N1 0.0095 (6) 0.0079 (5) 0.0080 (6) −0.0005 (4) −0.0004 (4) −0.0014 (5)
N2 0.0081 (5) 0.0099 (5) 0.0088 (6) 0.0014 (4) 0.0000 (5) 0.0009 (5)
C1 0.0084 (6) 0.0083 (6) 0.0095 (6) −0.0008 (5) −0.0002 (5) 0.0010 (5)
C2 0.0123 (6) 0.0093 (6) 0.0111 (7) −0.0004 (5) −0.0004 (5) 0.0009 (5)
C3 0.0136 (6) 0.0122 (6) 0.0080 (6) −0.0017 (5) 0.0010 (5) −0.0003 (5)
C4 0.0106 (6) 0.0110 (6) 0.0090 (6) −0.0010 (5) 0.0032 (5) −0.0012 (5)
C5 0.0074 (6) 0.0098 (6) 0.0094 (6) −0.0007 (5) 0.0001 (5) 0.0019 (5)
C6 0.0084 (6) 0.0084 (6) 0.0121 (6) −0.0010 (4) 0.0012 (5) −0.0001 (5)
C7 0.0090 (6) 0.0102 (6) 0.0114 (6) −0.0010 (5) −0.0005 (5) 0.0012 (5)
C8 0.0080 (6) 0.0096 (6) 0.0108 (7) 0.0008 (5) 0.0000 (5) −0.0010 (5)
C9 0.0135 (6) 0.0098 (6) 0.0081 (7) 0.0006 (5) 0.0003 (5) 0.0022 (5)
C10 0.0171 (7) 0.0122 (6) 0.0071 (6) 0.0015 (5) −0.0011 (5) −0.0013 (5)
C11 0.0112 (6) 0.0105 (6) 0.0112 (6) 0.0007 (5) −0.0015 (5) −0.0004 (5)
C12 0.0073 (6) 0.0098 (6) 0.0121 (6) 0.0011 (5) 0.0001 (5) −0.0004 (5)
C13 0.0083 (6) 0.0096 (6) 0.0125 (6) 0.0015 (5) −0.0007 (5) −0.0010 (5)
C14 0.0088 (6) 0.0116 (6) 0.0119 (6) 0.0010 (5) 0.0022 (5) 0.0001 (5)
N3 0.0108 (5) 0.0121 (5) 0.0141 (6) −0.0006 (4) −0.0012 (4) −0.0033 (5)
N4 0.0106 (5) 0.0127 (5) 0.0122 (6) 0.0001 (4) −0.0016 (4) −0.0010 (4)
C15 0.0127 (6) 0.0143 (6) 0.0119 (6) −0.0011 (5) −0.0011 (5) −0.0020 (5)
C16 0.0099 (6) 0.0127 (6) 0.0113 (6) 0.0003 (5) −0.0007 (5) −0.0006 (5)
C17 0.0204 (7) 0.0153 (7) 0.0164 (7) 0.0027 (5) −0.0024 (6) 0.0026 (6)
O1W 0.0118 (5) 0.0196 (5) 0.0193 (6) 0.0011 (4) −0.0009 (4) 0.0034 (4)
O2W 0.0140 (5) 0.0595 (9) 0.0155 (6) −0.0035 (6) −0.0019 (4) 0.0121 (6)
O3W 0.0142 (5) 0.0318 (6) 0.0138 (5) 0.0009 (5) −0.0037 (4) −0.0011 (5)
O4W 0.0139 (5) 0.0171 (5) 0.0163 (5) −0.0014 (4) −0.0006 (4) −0.0047 (4)

Geometric parameters (Å, °)

Ni1—N2 1.9668 (15) C9—H9A 0.9500
Ni1—N1 1.9698 (14) C10—C11 1.398 (2)
Ni1—O6 2.1178 (11) C10—H10A 0.9500
Ni1—O7 2.1273 (10) C11—C12 1.383 (2)
Ni1—O3 2.1324 (10) C11—H11A 0.9500
Ni1—O2 2.1477 (10) C12—C14 1.514 (2)
O1—C6 1.2483 (17) N3—C15 1.4932 (19)
O2—C6 1.2717 (18) N3—H3B 0.9100
O3—C7 1.2697 (18) N3—H3C 0.9100
O4—C7 1.2516 (17) N3—H3D 0.9100
O5—C13 1.2441 (18) N4—C16 1.5048 (17)
O6—C13 1.2754 (19) N4—H4B 0.9100
O7—C14 1.2655 (19) N4—H4C 0.9100
O8—C14 1.2498 (18) N4—H4D 0.9100
N1—C5 1.3340 (19) C15—C16 1.5205 (19)
N1—C1 1.3387 (19) C15—H15A 0.9900
N2—C12 1.335 (2) C15—H15B 0.9900
N2—C8 1.335 (2) C16—C17 1.523 (2)
C1—C2 1.384 (2) C16—H16A 1.0000
C1—C6 1.516 (2) C17—H17A 0.9800
C2—C3 1.397 (2) C17—H17B 0.9800
C2—H2A 0.9500 C17—H17C 0.9800
C3—C4 1.393 (2) O1W—H1WA 0.8201
C3—H3A 0.9500 O1W—H1WB 0.8200
C4—C5 1.389 (2) O2W—H2WA 0.8201
C4—H4A 0.9500 O2W—H2WB 0.8198
C5—C7 1.5130 (19) O3W—H3WA 0.8200
C8—C9 1.398 (2) O3W—H3WB 0.8201
C8—C13 1.516 (2) O4W—H4WA 0.8201
C9—C10 1.392 (2) O4W—H4WB 0.8201
N2—Ni1—N1 176.17 (5) C8—C9—H9A 121.0
N2—Ni1—O6 77.83 (5) C9—C10—C11 120.52 (14)
N1—Ni1—O6 104.64 (5) C9—C10—H10A 119.7
N2—Ni1—O7 78.27 (5) C11—C10—H10A 119.7
N1—Ni1—O7 99.37 (5) C12—C11—C10 117.85 (14)
O6—Ni1—O7 155.96 (4) C12—C11—H11A 121.1
N2—Ni1—O3 98.99 (5) C10—C11—H11A 121.1
N1—Ni1—O3 77.94 (5) N2—C12—C11 121.31 (14)
O6—Ni1—O3 95.64 (4) N2—C12—C14 112.42 (14)
O7—Ni1—O3 90.55 (4) C11—C12—C14 126.11 (13)
N2—Ni1—O2 105.48 (5) O5—C13—O6 126.37 (14)
N1—Ni1—O2 77.70 (5) O5—C13—C8 118.49 (13)
O6—Ni1—O2 87.29 (4) O6—C13—C8 115.14 (12)
O7—Ni1—O2 96.66 (4) O8—C14—O7 125.63 (14)
O3—Ni1—O2 155.41 (4) O8—C14—C12 118.02 (13)
C6—O2—Ni1 114.09 (9) O7—C14—C12 116.31 (12)
C7—O3—Ni1 114.43 (9) C15—N3—H3B 109.5
C13—O6—Ni1 114.94 (9) C15—N3—H3C 109.5
C14—O7—Ni1 113.70 (9) H3B—N3—H3C 109.5
C5—N1—C1 121.44 (14) C15—N3—H3D 109.5
C5—N1—Ni1 118.86 (10) H3B—N3—H3D 109.5
C1—N1—Ni1 119.70 (10) H3C—N3—H3D 109.5
C12—N2—C8 121.75 (15) C16—N4—H4B 109.5
C12—N2—Ni1 118.82 (11) C16—N4—H4C 109.5
C8—N2—Ni1 119.39 (11) H4B—N4—H4C 109.5
N1—C1—C2 121.11 (14) C16—N4—H4D 109.5
N1—C1—C6 112.38 (13) H4B—N4—H4D 109.5
C2—C1—C6 126.50 (14) H4C—N4—H4D 109.5
C1—C2—C3 117.99 (14) N3—C15—C16 112.62 (12)
C1—C2—H2A 121.0 N3—C15—H15A 109.1
C3—C2—H2A 121.0 C16—C15—H15A 109.1
C4—C3—C2 120.40 (14) N3—C15—H15B 109.1
C4—C3—H3A 119.8 C16—C15—H15B 109.1
C2—C3—H3A 119.8 H15A—C15—H15B 107.8
C5—C4—C3 117.93 (13) N4—C16—C15 111.16 (11)
C5—C4—H4A 121.0 N4—C16—C17 109.06 (12)
C3—C4—H4A 121.0 C15—C16—C17 110.80 (12)
N1—C5—C4 121.13 (14) N4—C16—H16A 108.6
N1—C5—C7 113.07 (13) C15—C16—H16A 108.6
C4—C5—C7 125.70 (13) C17—C16—H16A 108.6
O1—C6—O2 125.06 (13) C16—C17—H17A 109.5
O1—C6—C1 118.90 (13) C16—C17—H17B 109.5
O2—C6—C1 116.03 (12) H17A—C17—H17B 109.5
O4—C7—O3 125.65 (13) C16—C17—H17C 109.5
O4—C7—C5 118.88 (13) H17A—C17—H17C 109.5
O3—C7—C5 115.46 (12) H17B—C17—H17C 109.5
N2—C8—C9 120.62 (14) H1WA—O1W—H1WB 101.2
N2—C8—C13 112.42 (13) H2WA—O2W—H2WB 104.5
C9—C8—C13 126.95 (13) H3WA—O3W—H3WB 102.4
C10—C9—C8 117.93 (14) H4WA—O4W—H4WB 89.5
C10—C9—H9A 121.0
N2—Ni1—O2—C6 179.68 (10) Ni1—N1—C5—C4 −179.84 (10)
N1—Ni1—O2—C6 −2.52 (10) C1—N1—C5—C7 176.61 (12)
O6—Ni1—O2—C6 103.10 (10) Ni1—N1—C5—C7 −3.14 (16)
O7—Ni1—O2—C6 −100.70 (10) C3—C4—C5—N1 0.7 (2)
O3—Ni1—O2—C6 5.46 (16) C3—C4—C5—C7 −175.52 (13)
N2—Ni1—O3—C7 173.26 (10) Ni1—O2—C6—O1 −175.13 (11)
N1—Ni1—O3—C7 −4.41 (10) Ni1—O2—C6—C1 3.57 (15)
O6—Ni1—O3—C7 −108.21 (10) N1—C1—C6—O1 175.89 (13)
O7—Ni1—O3—C7 95.05 (10) C2—C1—C6—O1 −2.4 (2)
O2—Ni1—O3—C7 −12.39 (16) N1—C1—C6—O2 −2.89 (18)
N2—Ni1—O6—C13 −4.98 (10) C2—C1—C6—O2 178.85 (14)
N1—Ni1—O6—C13 178.04 (10) Ni1—O3—C7—O4 −177.39 (11)
O7—Ni1—O6—C13 1.20 (16) Ni1—O3—C7—C5 4.04 (15)
O3—Ni1—O6—C13 −102.99 (10) N1—C5—C7—O4 −179.55 (13)
O2—Ni1—O6—C13 101.50 (10) C4—C5—C7—O4 −3.0 (2)
N2—Ni1—O7—C14 −6.39 (10) N1—C5—C7—O3 −0.87 (18)
N1—Ni1—O7—C14 170.54 (10) C4—C5—C7—O3 175.64 (13)
O6—Ni1—O7—C14 −12.55 (15) C12—N2—C8—C9 −1.7 (2)
O3—Ni1—O7—C14 92.68 (10) Ni1—N2—C8—C9 176.03 (11)
O2—Ni1—O7—C14 −110.88 (10) C12—N2—C8—C13 179.89 (12)
O6—Ni1—N1—C5 96.77 (11) Ni1—N2—C8—C13 −2.41 (16)
O7—Ni1—N1—C5 −84.54 (11) N2—C8—C9—C10 1.3 (2)
O3—Ni1—N1—C5 4.01 (11) C13—C8—C9—C10 179.52 (14)
O2—Ni1—N1—C5 −179.38 (12) C8—C9—C10—C11 0.3 (2)
O6—Ni1—N1—C1 −83.00 (12) C9—C10—C11—C12 −1.6 (2)
O7—Ni1—N1—C1 95.70 (11) C8—N2—C12—C11 0.3 (2)
O3—Ni1—N1—C1 −175.75 (12) Ni1—N2—C12—C11 −177.38 (10)
O2—Ni1—N1—C1 0.86 (11) C8—N2—C12—C14 175.92 (12)
O6—Ni1—N2—C12 −178.35 (11) Ni1—N2—C12—C14 −1.80 (16)
O7—Ni1—N2—C12 4.21 (10) C10—C11—C12—N2 1.3 (2)
O3—Ni1—N2—C12 −84.47 (11) C10—C11—C12—C14 −173.67 (13)
O2—Ni1—N2—C12 97.96 (11) Ni1—O6—C13—O5 −174.76 (11)
O6—Ni1—N2—C8 3.88 (10) Ni1—O6—C13—C8 5.13 (15)
O7—Ni1—N2—C8 −173.56 (11) N2—C8—C13—O5 177.84 (12)
O3—Ni1—N2—C8 97.75 (11) C9—C8—C13—O5 −0.5 (2)
O2—Ni1—N2—C8 −79.81 (11) N2—C8—C13—O6 −2.06 (18)
C5—N1—C1—C2 −0.8 (2) C9—C8—C13—O6 179.62 (14)
Ni1—N1—C1—C2 179.00 (11) Ni1—O7—C14—O8 −174.94 (12)
C5—N1—C1—C6 −179.12 (12) Ni1—O7—C14—C12 7.30 (15)
Ni1—N1—C1—C6 0.63 (16) N2—C12—C14—O8 178.05 (12)
N1—C1—C2—C3 0.9 (2) C11—C12—C14—O8 −6.6 (2)
C6—C1—C2—C3 179.00 (13) N2—C12—C14—O7 −4.02 (18)
C1—C2—C3—C4 −0.2 (2) C11—C12—C14—O7 171.32 (14)
C2—C3—C4—C5 −0.6 (2) N3—C15—C16—N4 −61.32 (15)
C1—N1—C5—C4 −0.1 (2) N3—C15—C16—C17 177.24 (12)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1W—H1WA···O4W 0.82 1.97 2.788 (2) 173
O1W—H1WB···O2 0.82 2.47 3.109 (2) 135
O1W—H1WB···O6 0.82 2.21 2.912 (2) 144
O2W—H2WA···O3 0.82 2.21 2.759 (2) 125
N3—H3B···O4i 0.91 1.90 2.795 (2) 168
N3—H3C···O1W 0.91 1.91 2.763 (2) 155
N3—H3D···O8ii 0.91 1.88 2.783 (2) 176
O2W—H2WB···O1iii 0.82 2.07 2.849 (2) 160
N4—H4B···O3Wii 0.91 1.92 2.812 (2) 165
N4—H4C···O1 0.91 1.92 2.813 (2) 168
N4—H4D···O4Wiv 0.91 1.91 2.777 (2) 160
O3W—H3WA···O8 0.82 2.03 2.771 (2) 149
O3W—H3WB···O4v 0.82 1.99 2.787 (2) 166
O4W—H4WA···O2Wi 0.82 1.99 2.749 (2) 153
O4W—H4WB···O5 0.82 1.90 2.712 (2) 171
C10—H10A···O6vi 0.95 2.54 3.289 (2) 136
C11—H11A···O1Wvi 0.95 2.58 3.484 (2) 160
C15—H15B···O5vii 0.99 2.30 3.268 (2) 164
C16—H16A···O7ii 1.00 2.49 3.291 (2) 137

Symmetry codes: (i) x+1/2, −y+3/2, z; (ii) x+1/2, −y+1/2, z; (iii) −x+1/2, y+1/2, z−1/2; (iv) x, y−1, z; (v) −x, −y+1, z−1/2; (vi) −x+1/2, y−1/2, z−1/2; (vii) −x+1, −y+1, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2054).

References

  1. Aghabozorg, H., Ghadermazi, M. & Attar Gharamaleki, J. (2006). Acta Cryst. E62, o3174–o3176.
  2. Aghabozorg, H., Ghadermazi, M. & Ramezanipour, F. (2006). Acta Cryst. E62, o1143–o1146.
  3. Aghabozorg, H., Ghadermazi, M., Sheshmani, S. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, o2985–o2986.
  4. Aghabozorg, H., Heidari, M., Ghadermazi, M. & Attar Gharamaleki, J. (2008). Acta Cryst. E64, o1045–o1046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc.5, 184–227.
  6. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  7. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  8. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808016309/su2054sup1.cif

e-64-0m874-sup1.cif (25.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808016309/su2054Isup2.hkl

e-64-0m874-Isup2.hkl (312.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES