Abstract
Infection of mice with lymphocytic choriomeningitis virus (LCMV) produces a rapidly induced immuno-suppression manifested by low lymphocyte proliferation in response to lipopolysaccharide (LPS) and concanavalin A (ConA). Analysis of the mechanisms underlying the unresponsiveness to these mitogens was undertaken at the cellular and molecular levels 7 days after infection. The selective elimination of CD8+ T cells and the results of coculture experiments demonstrated that unresponsiveness was not due to suppressor cells. Similarly, the role of inhibitory factors such as prostaglandins was excluded, since indomethacin, which inhibits their production, did not reverse the unresponsiveness. Analysis of different cytokines secreted by ConA-activated macrophages or T cells revealed that interleukin-1 (IL-1), synthesized during the T-dependent activation of macrophages by ConA, was normally produced by cells from LCMV-infected mice. In contrast, IL-2, which is produced by activated CD4+ T cells, was undetectable. Addition of exogenous IL-2 did not restore the proliferative response, although the p55-kilodalton protein of the IL-2 receptor was induced by ConA on CD4+ cells from LCMV-infected mice. Our results can be interpreted as showing that (i) unresponsiveness to mitogens of cells from LCMV-infected mice is not due to altered functions of the macrophages with respect to IL-1 production; (ii) CD4+ cells are activated, since the p55 chain of the IL-2 receptor is induced; (iii) the lack of IL-2 production cannot explain T-cell unresponsiveness, since addition of exogenous IL-2 did not restore the proliferative response. Taken together, these data suggest that T-lymphocyte unresponsiveness should be related to an inherent proliferative defect subsequent to T-cell activation and IL-2 receptor expression.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Assmann-Wischer U., Moskophidis D., Simon M. M., Lehmann-Grube F. Numbers of cytolytic T lymphocytes (CTL) and CTL precursor cells in spleens of mice acutely infected with lymphocytic choriomeningitis virus. Med Microbiol Immunol. 1986;175(2-3):141–143. doi: 10.1007/BF02122435. [DOI] [PubMed] [Google Scholar]
- Baker P. E., Fahey J. V., Munck A. Prostaglandin inhibition of T-cell proliferation is mediated at two levels. Cell Immunol. 1981 Jun;61(1):52–61. doi: 10.1016/0008-8749(81)90353-1. [DOI] [PubMed] [Google Scholar]
- Bich-Thuy L. T., Dukovich M., Peffer N. J., Fauci A. S., Kehrl J. H., Greene W. C. Direct activation of human resting T cells by IL 2: the role of an IL 2 receptor distinct from the Tac protein. J Immunol. 1987 Sep 1;139(5):1550–1556. [PubMed] [Google Scholar]
- Blackett S., Mims C. A. Studies of depressed interleukin-2 production by spleen cells from mice following infection with cytomegalovirus. Arch Virol. 1988;99(1-2):1–8. doi: 10.1007/BF01311018. [DOI] [PubMed] [Google Scholar]
- Bro-Jorgensen K., Volkert M. Haemopoietic defects in mice infected with lymphocytic choriomeningitis virus. 2. The viral effect upon the function of colony-forming stem cells. Acta Pathol Microbiol Scand B Microbiol Immunol. 1972;80(6):853–862. [PubMed] [Google Scholar]
- Buchmeier M. J., Welsh R. M., Dutko F. J., Oldstone M. B. The virology and immunobiology of lymphocytic choriomeningitis virus infection. Adv Immunol. 1980;30:275–331. doi: 10.1016/s0065-2776(08)60197-2. [DOI] [PubMed] [Google Scholar]
- Chan E. L., Henry C. Coexistence of helper and suppressor activities in carrier-primed spleen cells. J Immunol. 1976 Oct;117(4):1132–1138. [PubMed] [Google Scholar]
- Cohn Z. A., Steinman R. M. The immunological and infectious sequelae of the acquired immune deficiency syndrome. J Exp Med. 1988 Dec 1;168(6):2415–2423. doi: 10.1084/jem.168.6.2415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dukovich M., Wano Y., Le thi Bich Thuy, Katz P., Cullen B. R., Kehrl J. H., Greene W. C. A second human interleukin-2 binding protein that may be a component of high-affinity interleukin-2 receptors. Nature. 1987 Jun 11;327(6122):518–522. doi: 10.1038/327518a0. [DOI] [PubMed] [Google Scholar]
- Durum S. K., Schmidt J. A., Oppenheim J. J. Interleukin 1: an immunological perspective. Annu Rev Immunol. 1985;3:263–287. doi: 10.1146/annurev.iy.03.040185.001403. [DOI] [PubMed] [Google Scholar]
- Goodwin J. S., Bankhurst A. D., Messner R. P. Suppression of human T-cell mitogenesis by prostaglandin. Existence of a prostaglandin-producing suppressor cell. J Exp Med. 1977 Dec 1;146(6):1719–1734. doi: 10.1084/jem.146.6.1719. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gordon D., Bray M. A., Morley J. Control of lymphokine secretion by prostaglandins. Nature. 1976 Jul 29;262(5567):401–402. doi: 10.1038/262401a0. [DOI] [PubMed] [Google Scholar]
- Güttler F., Bro-Jorgensen K., Jorgensen P. N. Transient impaired cell-mediated tumor immunity after acute infection with lymphocytic choriomeningitis virus. Scand J Immunol. 1975;4(4):327–336. doi: 10.1111/j.1365-3083.1975.tb02633.x. [DOI] [PubMed] [Google Scholar]
- Jacobs R. P., Cole G. A. Lymphocytic choriomeningitis virus-induced immunosuppression: a virus-induced macrophage defect. J Immunol. 1976 Sep;117(3):1004–1009. [PubMed] [Google Scholar]
- Kasaian M. T., Biron C. A. The activation of IL-2 transcription in L3T4+ and Lyt-2+ lymphocytes during virus infection in vivo. J Immunol. 1989 Feb 15;142(4):1287–1292. [PubMed] [Google Scholar]
- Larsson E. L. Cyclosporin A and dexamethasone suppress T cell responses by selectively acting at distinct sites of the triggering process. J Immunol. 1980 Jun;124(6):2828–2833. [PubMed] [Google Scholar]
- Le Moal M. A., Stoeck M., Cavaillon J. M., MacDonald H. O., Truffa-Bachi P. A sensitive, IL-2-independent, assay for IL-1. J Immunol Methods. 1988 Feb 24;107(1):23–30. doi: 10.1016/0022-1759(88)90004-x. [DOI] [PubMed] [Google Scholar]
- Lehmann-Grube F., Niemeyer I., Löhler J. Lymphocytic choriomeningitis of the mouse. IV. Depression of the allograft reaction. Med Microbiol Immunol. 1972;158(1):16–25. doi: 10.1007/BF02122004. [DOI] [PubMed] [Google Scholar]
- Lowenthal J. W., Cerottini J. C., MacDonald H. R. Interleukin 1-dependent induction of both interleukin 2 secretion and interleukin 2 receptor expression by thymoma cells. J Immunol. 1986 Aug 15;137(4):1226–1231. [PubMed] [Google Scholar]
- Lynch F., Doherty P. C., Ceredig R. Phenotypic and functional analysis of the cellular response in regional lymphoid tissue during an acute virus infection. J Immunol. 1989 May 15;142(10):3592–3598. [PubMed] [Google Scholar]
- Malkovský M., Sondel P. M., Strober W., Dalgleish A. G. The interleukins in acquired disease. Clin Exp Immunol. 1988 Nov;74(2):151–161. [PMC free article] [PubMed] [Google Scholar]
- Mims C. A., Wainwright S. The immunodepressive action of lymphocytic choriomeningitis virus in mice. J Immunol. 1968 Oct;101(4):717–724. [PubMed] [Google Scholar]
- Mizel S. B. Interleukin 1 and T cell activation. Immunol Rev. 1982;63:51–72. doi: 10.1111/j.1600-065x.1982.tb00411.x. [DOI] [PubMed] [Google Scholar]
- Moreau J. L., Nabholz M., Diamantstein T., Malek T., Shevach E., Thèze J. Monoclonal antibodies identify three epitope clusters on the mouse p55 subunit of the interleukin 2 receptor: relationship to the interleukin 2-binding site. Eur J Immunol. 1987 Jul;17(7):929–935. doi: 10.1002/eji.1830170706. [DOI] [PubMed] [Google Scholar]
- Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983 Dec 16;65(1-2):55–63. doi: 10.1016/0022-1759(83)90303-4. [DOI] [PubMed] [Google Scholar]
- Ohashi Y., Takeshita T., Nagata K., Mori S., Sugamura K. Differential expression of the IL-2 receptor subunits, p55 and p75 on various populations of primary peripheral blood mononuclear cells. J Immunol. 1989 Dec 1;143(11):3548–3555. [PubMed] [Google Scholar]
- Pierce C. W., Kapp J. A., Wood D. D., Benacerraf B. Immune responses in vitro. X. Functions of macrophages. J Immunol. 1974 Mar;112(3):1181–1189. [PubMed] [Google Scholar]
- Portnoï D., Motta I., Truffa-Bachi P. Immune unresponsiveness of spleen cells from lipopolysaccharide-sensitized mice to particulate thymus-dependent antigens. II. Evidence for an abortive cooperation between T lymphocytes and antigen-presenting cells. Cell Immunol. 1982 May 15;69(2):374–380. doi: 10.1016/0008-8749(82)90079-x. [DOI] [PubMed] [Google Scholar]
- Rappaport R. S., Dodge G. R. Prostaglandin E inhibits the production of human interleukin 2. J Exp Med. 1982 Mar 1;155(3):943–948. doi: 10.1084/jem.155.3.943. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rodgers B. C., Scott D. M., Mundin J., Sissons J. G. Monocyte-derived inhibitor of interleukin 1 induced by human cytomegalovirus. J Virol. 1985 Sep;55(3):527–532. doi: 10.1128/jvi.55.3.527-532.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rojko J. L., Olsen R. G. The immunobiology of the feline leukemia virus. Vet Immunol Immunopathol. 1984 May;6(1-2):107–165. doi: 10.1016/0165-2427(84)90050-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roost H., Charan S., Gobet R., Rüedi E., Hengartner H., Althage A., Zinkernagel R. M. An acquired immune suppression in mice caused by infection with lymphocytic choriomeningitis virus. Eur J Immunol. 1988 Apr;18(4):511–518. doi: 10.1002/eji.1830180404. [DOI] [PubMed] [Google Scholar]
- Rouse B. T., Horohov D. W. Immunosuppression in viral infections. Rev Infect Dis. 1986 Nov-Dec;8(6):850–873. doi: 10.1093/clinids/8.6.850. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Silberman S. L., Jacobs R. P., Cole G. A. Mechanisms of hemopoietic and immunological dysfunction induced by lymphocytic choriomeningitis virus. Infect Immun. 1978 Feb;19(2):533–539. doi: 10.1128/iai.19.2.533-539.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith K. A. Interleukin-2: inception, impact, and implications. Science. 1988 May 27;240(4856):1169–1176. doi: 10.1126/science.3131876. [DOI] [PubMed] [Google Scholar]
- Smith K. A. The interleukin 2 receptor. Adv Immunol. 1988;42:165–179. doi: 10.1016/s0065-2776(08)60844-5. [DOI] [PubMed] [Google Scholar]
- Thomsen A. R., Bro-Jørgensen K., Jensen B. L. Lymphocytic choriomeningitis virus-induced immunosuppression: evidence for viral interference with T-cell maturation. Infect Immun. 1982 Sep;37(3):981–986. doi: 10.1128/iai.37.3.981-986.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vane J. R. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat New Biol. 1971 Jun 23;231(25):232–235. doi: 10.1038/newbio231232a0. [DOI] [PubMed] [Google Scholar]
- Wu-Hsieh B., Howard D. H., Ahmed R. Virus-induced immunosuppression: a murine model of susceptibility to opportunistic infection. J Infect Dis. 1988 Jul;158(1):232–235. doi: 10.1093/infdis/158.1.232. [DOI] [PubMed] [Google Scholar]
- Zinkernagel R. M., Pfau C. J., Hengartner H., Althage A. Susceptibility to murine lymphocytic choriomeningitis maps to class I MHC genes--a model for MHC/disease associations. 1985 Aug 29-Sep 4Nature. 316(6031):814–817. doi: 10.1038/316814a0. [DOI] [PubMed] [Google Scholar]