Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Jan 12;67(Pt 2):o376. doi: 10.1107/S1600536810054644

N-(3-Chloro-4-eth­oxy­benzo­yl)-N′-(2-meth­oxy­phen­yl)thio­urea

Jing-Han Hu a,*, Zhong-Yi Luo a, Chen-Fei Ding a, Xiao-Li Song a
PMCID: PMC3051694  PMID: 21523053

Abstract

In the title compound, C17H17ClN2O3S, the central carbonyl­thio­urea unit is nearly planar [maximum atomic deviation = 0.019 (3) Å] and makes dihedral angles of 2.47 (7) and 17.76 (6)° with the terminal benzene rings. An intra­molecular N—H⋯O hydrogen bond occurs. Weak inter­molecular C—H⋯S and C—H⋯Cl hydrogen bonding is observed in the crystal structure.

Related literature

For applications of thio­urea derivatives, see: Antholine & Taketa (1982); Schroeder (1955). For related structures, see: Yusof & Yamin (2004a ,b ); Ali et al. (2004). For related acyl­thio­urea derivatives, see: Zhang et al. (2003, 2006).graphic file with name e-67-0o376-scheme1.jpg

Experimental

Crystal data

  • C17H17ClN2O3S

  • M r = 364.84

  • Triclinic, Inline graphic

  • a = 7.8238 (8) Å

  • b = 8.4791 (11) Å

  • c = 14.9867 (13) Å

  • α = 76.365 (7)°

  • β = 89.384 (5)°

  • γ = 62.647 (4)°

  • V = 852.65 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 296 K

  • 0.38 × 0.35 × 0.27 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.874, T max = 0.908

  • 4903 measured reflections

  • 3314 independent reflections

  • 2679 reflections with I > 2σ(I)

  • R int = 0.012

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061

  • wR(F 2) = 0.216

  • S = 1.06

  • 3314 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.85 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810054644/xu5125sup1.cif

e-67-0o376-sup1.cif (19.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810054644/xu5125Isup2.hkl

e-67-0o376-Isup2.hkl (162.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2 0.86 1.88 2.613 (3) 143
C6—H6⋯S1i 0.93 2.86 3.468 (2) 124
C14—H14⋯Cl1ii 0.93 2.81 3.680 (3) 156

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We acknowledge the support of the Colleges and Universities Graduate Advisor Research Project in Gansu Province, China (No. 0804–11)

supplementary crystallographic information

Comment

Thiourea derivatives have been studied for their potential use in agriculture, medicine and analytical chemistry (Schroeder, 1955; Antholine & Taketa, 1982). As part of our ongoing work on acylthiourea derivatives (Zhang et al., 2003; Zhang et al., 2006), we present here the structure of the title thiourea derivative, (I).

Benzoylthiourea derivatives can be synthesized from the reaction between benzoylisothiocyanate and amine compounds. In the title compound, (I), the molecular structure and dimensions are similar to those in other benzoylthiourea derivatives, such as N-(2-chlorophenyl)-N'-(4-methoxybenzoyl)thiourea (Yusof & Yamin, 2004a), N-(4-methoxybenzoyl-N'-(o-tolyl)thiourea (Yusof & Yamin, 2004b) and N-(p-methoxybenzoyl)-N'-(o-methoxyphenyl)thiourea (Ali et al., 2004). The molecule maintains its trans-cis configuration with respect to the position of the 3-chloro-4-ethoxybenzoyl and 2-methoxyphenyl groups relative to the S atom across the thiourea C—N bonds.

The central carbonyl thiourea moiety (S1/O2/N1/N2/C9/C10), the 2-methoxyphenyl group (C11–C16/O3/C23) and the 3-chloro-4-ethoxybenzoyl (C1–C6/C8/O1) group are individually planar. The C10—S1, C10—N1 and C10—N2 bond lengths are1.665 (2), 1.392 (2) and 1.333 (3) Å, respectively, comparable with those in N-(2-chlorophenyl)-N'- (4-methoxybenzoyl)-thiourea [C═S = 1.662 (2) Å, C8—N1 = 1.386 (3) Å and C8—N2 = 1.331 (3) Å; Yusof & Yamin, 2004a] and other benzoylthiourea derivatives. There is one intramolecular hydrogen bonds, via N2—H2···O2; as a result, one pseudo-six-membered rings, is formed (Fig. 1).

Experimental

Potassium thiocyanate (7.5 mmol), 3-chloro-4-ethoxybenzoyl chloride (5 mmol), PEG-400 (3% with respect to ammonium thiocyanate) and dichloromethane (20 ml) were placed in a dried flask and stirred at room temperature for 1 h, then 2-methoxyaniline (5 mmol) was added. The mixture was stirred for 0.5 h at room temperature and a precipitate was formed. This was filtered off, washed with water and dried. yellow single crystals of (I) were obtained from an ethanol–dimethylformamide (1:1) solution.

Refinement

Methyl H atoms were placed in calculated positions with C—H = 0.96 Å and torsion angles were refined to fit the electron density, Uiso(H) = 1.5Ueq(C). Other H atoms were placed in calculated positions with C—H = 0.93 (aromatic), 0.97 Å (methylene) and N—H = 0.86 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(N,C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, shown with 50% probability displacement ellipsoids.

Crystal data

C17H17ClN2O3S Z = 2
Mr = 364.84 F(000) = 380
Triclinic, P1 Dx = 1.421 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.8238 (8) Å Cell parameters from 2087 reflections
b = 8.4791 (11) Å θ = 2.8–29.3°
c = 14.9867 (13) Å µ = 0.36 mm1
α = 76.365 (7)° T = 296 K
β = 89.384 (5)° Block, yellow
γ = 62.647 (4)° 0.38 × 0.35 × 0.27 mm
V = 852.65 (16) Å3

Data collection

Bruker APEXII CCD diffractometer 3314 independent reflections
Radiation source: fine-focus sealed tube 2679 reflections with I > 2σ(I)
graphite Rint = 0.012
φ and ω scans θmax = 26.0°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −9→9
Tmin = 0.874, Tmax = 0.908 k = −10→9
4903 measured reflections l = −18→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.216 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1281P)2 + 0.5121P] where P = (Fo2 + 2Fc2)/3
3314 reflections (Δ/σ)max < 0.001
219 parameters Δρmax = 0.33 e Å3
0 restraints Δρmin = −0.85 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.7479 (5) 0.3322 (4) 0.6563 (2) 0.0500 (7)
C2 0.9023 (5) 0.1588 (4) 0.6605 (2) 0.0484 (7)
C3 1.0005 (5) 0.1342 (4) 0.5825 (2) 0.0535 (7)
H3 1.1037 0.0201 0.5832 0.064*
C4 0.9454 (5) 0.2778 (4) 0.5048 (2) 0.0507 (7)
H4 1.0123 0.2591 0.4534 0.061*
C5 0.7916 (4) 0.4512 (4) 0.50087 (19) 0.0455 (7)
C6 0.6918 (4) 0.4750 (4) 0.5784 (2) 0.0467 (7)
H6 0.5868 0.5883 0.5772 0.056*
C7 1.0853 (5) −0.1587 (4) 0.7415 (2) 0.0600 (8)
H7A 1.2106 −0.1668 0.7289 0.072*
H7B 1.0421 −0.1991 0.6950 0.072*
C8 1.0993 (6) −0.2751 (5) 0.8357 (3) 0.0758 (11)
H8A 1.1418 −0.2333 0.8809 0.114*
H8B 1.1905 −0.4008 0.8396 0.114*
H8C 0.9745 −0.2659 0.8472 0.114*
C9 0.7458 (4) 0.5941 (4) 0.4133 (2) 0.0488 (7)
C10 0.5447 (4) 0.9307 (4) 0.34023 (19) 0.0435 (6)
C11 0.5829 (4) 1.0267 (4) 0.17305 (19) 0.0438 (6)
C12 0.7042 (4) 0.9479 (4) 0.1091 (2) 0.0465 (7)
C13 0.6871 (5) 1.0502 (4) 0.0204 (2) 0.0557 (8)
H13 0.7675 0.9962 −0.0217 0.067*
C14 0.5509 (5) 1.2321 (5) −0.0058 (2) 0.0607 (8)
H14 0.5390 1.3018 −0.0657 0.073*
C15 0.4325 (5) 1.3110 (4) 0.0562 (2) 0.0624 (9)
H15 0.3413 1.4346 0.0379 0.075*
C16 0.4464 (5) 1.2103 (4) 0.1452 (2) 0.0552 (8)
H16 0.3641 1.2656 0.1863 0.066*
C23 0.9845 (6) 0.6837 (5) 0.0906 (3) 0.0777 (12)
H23A 0.9323 0.6801 0.0339 0.117*
H23B 1.0716 0.5608 0.1254 0.117*
H23C 1.0533 0.7541 0.0770 0.117*
Cl1 0.6221 (2) 0.36762 (17) 0.75042 (8) 0.0918 (4)
N1 0.6147 (4) 0.7725 (3) 0.41304 (16) 0.0461 (6)
H1 0.5705 0.7877 0.4648 0.055*
N2 0.6167 (4) 0.9049 (3) 0.26084 (16) 0.0480 (6)
H2 0.6994 0.7928 0.2638 0.058*
O1 0.9466 (4) 0.0284 (3) 0.74006 (15) 0.0597 (6)
O2 0.8217 (4) 0.5561 (3) 0.34440 (15) 0.0700 (7)
O3 0.8333 (4) 0.7658 (3) 0.14238 (16) 0.0636 (7)
S1 0.38700 (13) 1.12797 (11) 0.36170 (5) 0.0603 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0574 (17) 0.0502 (16) 0.0453 (16) −0.0268 (14) 0.0093 (13) −0.0143 (13)
C2 0.0594 (18) 0.0439 (15) 0.0419 (15) −0.0256 (14) −0.0015 (12) −0.0080 (12)
C3 0.0589 (18) 0.0428 (15) 0.0447 (16) −0.0135 (13) 0.0026 (13) −0.0086 (13)
C4 0.0574 (17) 0.0429 (15) 0.0420 (15) −0.0150 (13) 0.0073 (12) −0.0120 (12)
C5 0.0512 (16) 0.0412 (14) 0.0407 (15) −0.0183 (13) 0.0019 (12) −0.0115 (12)
C6 0.0514 (16) 0.0394 (14) 0.0470 (16) −0.0188 (13) 0.0064 (12) −0.0128 (12)
C7 0.067 (2) 0.0490 (17) 0.0524 (18) −0.0226 (16) −0.0052 (15) −0.0028 (14)
C8 0.087 (3) 0.062 (2) 0.067 (2) −0.037 (2) −0.006 (2) 0.0087 (18)
C9 0.0557 (17) 0.0391 (14) 0.0419 (15) −0.0151 (13) 0.0026 (12) −0.0086 (12)
C10 0.0443 (15) 0.0400 (14) 0.0414 (14) −0.0151 (12) 0.0039 (11) −0.0124 (11)
C11 0.0467 (15) 0.0392 (14) 0.0383 (14) −0.0154 (12) 0.0033 (11) −0.0080 (11)
C12 0.0498 (16) 0.0395 (14) 0.0442 (15) −0.0168 (12) 0.0060 (12) −0.0091 (12)
C13 0.0631 (19) 0.0518 (17) 0.0456 (16) −0.0220 (15) 0.0154 (14) −0.0119 (13)
C14 0.068 (2) 0.0560 (19) 0.0449 (17) −0.0253 (16) 0.0057 (14) 0.0015 (14)
C15 0.0605 (19) 0.0432 (16) 0.0551 (18) −0.0080 (14) 0.0061 (15) 0.0023 (14)
C16 0.0524 (17) 0.0445 (16) 0.0475 (16) −0.0079 (13) 0.0095 (13) −0.0066 (13)
C23 0.069 (2) 0.053 (2) 0.090 (3) −0.0121 (17) 0.032 (2) −0.0168 (19)
Cl1 0.1143 (9) 0.0876 (8) 0.0697 (7) −0.0445 (7) 0.0403 (6) −0.0216 (5)
N1 0.0549 (14) 0.0374 (12) 0.0348 (11) −0.0131 (10) 0.0070 (10) −0.0083 (9)
N2 0.0556 (14) 0.0361 (12) 0.0380 (12) −0.0101 (10) 0.0073 (10) −0.0092 (10)
O1 0.0798 (16) 0.0468 (12) 0.0420 (11) −0.0253 (11) 0.0027 (10) −0.0027 (9)
O2 0.0962 (18) 0.0416 (11) 0.0400 (12) −0.0062 (12) 0.0159 (11) −0.0103 (9)
O3 0.0711 (15) 0.0417 (11) 0.0552 (13) −0.0089 (10) 0.0227 (11) −0.0106 (10)
S1 0.0673 (6) 0.0436 (5) 0.0466 (5) −0.0055 (4) 0.0105 (4) −0.0144 (3)

Geometric parameters (Å, °)

C1—C6 1.371 (4) C10—N2 1.333 (4)
C1—C2 1.397 (4) C10—N1 1.392 (4)
C1—Cl1 1.716 (3) C10—S1 1.665 (3)
C2—O1 1.341 (4) C11—C16 1.384 (4)
C2—C3 1.396 (4) C11—C12 1.402 (4)
C3—C4 1.373 (4) C11—N2 1.408 (4)
C3—H3 0.9300 C12—O3 1.367 (3)
C4—C5 1.395 (4) C12—C13 1.375 (4)
C4—H4 0.9300 C13—C14 1.372 (5)
C5—C6 1.395 (4) C13—H13 0.9300
C5—C9 1.477 (4) C14—C15 1.369 (5)
C6—H6 0.9300 C14—H14 0.9300
C7—O1 1.448 (4) C15—C16 1.379 (4)
C7—C8 1.492 (5) C15—H15 0.9300
C7—H7A 0.9700 C16—H16 0.9300
C7—H7B 0.9700 C23—O3 1.402 (4)
C8—H8A 0.9600 C23—H23A 0.9600
C8—H8B 0.9600 C23—H23B 0.9600
C8—H8C 0.9600 C23—H23C 0.9600
C9—O2 1.221 (4) N1—H1 0.8600
C9—N1 1.383 (4) N2—H2 0.8600
C6—C1—C2 121.7 (3) N2—C10—S1 127.6 (2)
C6—C1—Cl1 118.8 (2) N1—C10—S1 117.5 (2)
C2—C1—Cl1 119.4 (2) C16—C11—C12 118.5 (3)
O1—C2—C3 124.8 (3) C16—C11—N2 127.1 (3)
O1—C2—C1 117.2 (3) C12—C11—N2 114.4 (2)
C3—C2—C1 118.0 (3) O3—C12—C13 124.7 (3)
C4—C3—C2 120.2 (3) O3—C12—C11 114.4 (2)
C4—C3—H3 119.9 C13—C12—C11 120.9 (3)
C2—C3—H3 119.9 C14—C13—C12 119.7 (3)
C3—C4—C5 121.7 (3) C14—C13—H13 120.2
C3—C4—H4 119.1 C12—C13—H13 120.2
C5—C4—H4 119.1 C15—C14—C13 120.0 (3)
C6—C5—C4 118.0 (3) C15—C14—H14 120.0
C6—C5—C9 125.4 (3) C13—C14—H14 120.0
C4—C5—C9 116.6 (3) C14—C15—C16 121.1 (3)
C1—C6—C5 120.3 (3) C14—C15—H15 119.4
C1—C6—H6 119.9 C16—C15—H15 119.4
C5—C6—H6 119.9 C15—C16—C11 119.8 (3)
O1—C7—C8 106.8 (3) C15—C16—H16 120.1
O1—C7—H7A 110.4 C11—C16—H16 120.1
C8—C7—H7A 110.4 O3—C23—H23A 109.5
O1—C7—H7B 110.4 O3—C23—H23B 109.5
C8—C7—H7B 110.4 H23A—C23—H23B 109.5
H7A—C7—H7B 108.6 O3—C23—H23C 109.5
C7—C8—H8A 109.5 H23A—C23—H23C 109.5
C7—C8—H8B 109.5 H23B—C23—H23C 109.5
H8A—C8—H8B 109.5 C9—N1—C10 128.7 (2)
C7—C8—H8C 109.5 C9—N1—H1 115.6
H8A—C8—H8C 109.5 C10—N1—H1 115.6
H8B—C8—H8C 109.5 C10—N2—C11 132.1 (2)
O2—C9—N1 121.6 (3) C10—N2—H2 114.0
O2—C9—C5 121.3 (3) C11—N2—H2 114.0
N1—C9—C5 117.1 (3) C2—O1—C7 118.0 (2)
N2—C10—N1 114.8 (2) C12—O3—C23 118.7 (3)
C6—C1—C2—O1 179.6 (3) O3—C12—C13—C14 179.5 (3)
Cl1—C1—C2—O1 −1.3 (4) C11—C12—C13—C14 0.6 (5)
C6—C1—C2—C3 0.4 (5) C12—C13—C14—C15 −0.1 (6)
Cl1—C1—C2—C3 179.5 (2) C13—C14—C15—C16 −0.5 (6)
O1—C2—C3—C4 −178.9 (3) C14—C15—C16—C11 0.6 (6)
C1—C2—C3—C4 0.2 (5) C12—C11—C16—C15 −0.1 (5)
C2—C3—C4—C5 0.1 (5) N2—C11—C16—C15 179.8 (3)
C3—C4—C5—C6 −0.9 (5) O2—C9—N1—C10 1.6 (5)
C3—C4—C5—C9 −179.8 (3) C5—C9—N1—C10 −178.8 (3)
C2—C1—C6—C5 −1.3 (5) N2—C10—N1—C9 −0.9 (5)
Cl1—C1—C6—C5 179.6 (2) S1—C10—N1—C9 −179.7 (3)
C4—C5—C6—C1 1.5 (5) N1—C10—N2—C11 179.6 (3)
C9—C5—C6—C1 −179.8 (3) S1—C10—N2—C11 −1.8 (5)
C6—C5—C9—O2 −169.5 (3) C16—C11—N2—C10 −6.2 (5)
C4—C5—C9—O2 9.2 (5) C12—C11—N2—C10 173.6 (3)
C6—C5—C9—N1 11.0 (5) C3—C2—O1—C7 −10.3 (5)
C4—C5—C9—N1 −170.3 (3) C1—C2—O1—C7 170.6 (3)
C16—C11—C12—O3 −179.5 (3) C8—C7—O1—C2 −177.0 (3)
N2—C11—C12—O3 0.7 (4) C13—C12—O3—C23 13.3 (5)
C16—C11—C12—C13 −0.5 (5) C11—C12—O3—C23 −167.8 (3)
N2—C11—C12—C13 179.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2···O2 0.86 1.88 2.613 (3) 143
C6—H6···S1i 0.93 2.86 3.468 (2) 124
C14—H14···Cl1ii 0.93 2.81 3.680 (3) 156

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x, y+1, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5125).

References

  1. Ali, H., Halim, S. N. A., Khamis, N. A., Yusof, M. S. & Yamin, B. M. (2004). Acta Cryst. E60, o1497–o1498.
  2. Antholine, W. & Taketa, F. (1982). J. Inorg. Biochem. 16, 145–154. [DOI] [PubMed]
  3. Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Schroeder, D. C. (1955). Chem. Rev. 50, 181–228.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Yusof, M. S. M. & Yamin, B. M. (2004a). Acta Cryst. E60, o1998–o1999.
  8. Yusof, M. S. M. & Yamin, B. M. (2004b). Acta Cryst. E60, o1687–o1688.
  9. Zhang, Y.-M., Cao, C., Lin, Q. & Wei, T.-B. (2006). Acta Cryst. E62, o1791–o1792.
  10. Zhang, Y.-M., Xian, L. & Wei, T.-B. (2003). Acta Cryst. C59, m473–m474. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810054644/xu5125sup1.cif

e-67-0o376-sup1.cif (19.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810054644/xu5125Isup2.hkl

e-67-0o376-Isup2.hkl (162.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES