Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Dec 24;66(Pt 1):o226–o227. doi: 10.1107/S160053680905421X

2-Propynyl 2-hydroxy­benzoate

Stephan M Levonis a, Milton J Kiefel a, Todd A Houston a, Peter C Healy b,*
PMCID: PMC2980208  PMID: 21580108

Abstract

The title compound, C10H8O3, has been synthesized as part of our investigations into the generation of new anti­bacterial agents and serves as a building block for the synthesis of compound libraries. The compound crystallizes with two independent mol­ecules in the asymmetric unit. The transoid propynyl ester groups are coplanar with the 2-hydroxy­benzoate group with maximum deviations of −0.3507 (3) and 0.1591 (3) Å for the terminal carbons, with intra­molecular O—H⋯O hydrogen bonding providing rigidity to the structure and ensuring that the reactivity of the alkyne is not compromised by steric factors. The propynyl group forms inter­molecular C—H⋯O inter­actions with the phenolic O atom. Supra­molecular chains along the b axis are found for both mol­ecules with links by weak O—H⋯O inter­molecular inter­actions in the first independent mol­ecule and C—H⋯O inter­actions in the second.

Related literature

For background to Cu(I)-mediated azide–alkyne cyclo­additions, see: Houston et al. (2008); Wilkinson et al. (2009). For the biological use of salicylates, see: Sox & Olson (1989). For background to boric acid-mediated esterification, see: Houston et al. (2004, 2007); Levonis et al. (2007). For stereochemistry, see: Wilkinson et al. (2006); Wiberg & Laidig (1987). For previous synthesis of the title compound and its anti-tumour activity, see: Jung et al. (1997).graphic file with name e-66-0o226-scheme1.jpg

Experimental

Crystal data

  • C10H8O3

  • M r = 176.16

  • Monoclinic, Inline graphic

  • a = 18.7150 (14) Å

  • b = 12.7972 (10) Å

  • c = 7.2310 (7) Å

  • β = 90.191 (8)°

  • V = 1731.8 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.36 × 0.30 × 0.12 mm

Data collection

  • Oxford-Diffraction GEMINI S Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) T min = 0.965, T max = 0.988

  • 10756 measured reflections

  • 3081 independent reflections

  • 1941 reflections with I > 2σ(I)

  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.098

  • S = 0.93

  • 3081 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680905421X/tk2601sup1.cif

e-66-0o226-sup1.cif (22.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680905421X/tk2601Isup2.hkl

e-66-0o226-Isup2.hkl (151.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O7 0.90 1.86 2.6193 (16) 141
O1—H1⋯O7i 0.90 2.55 3.2081 (17) 130
O11—H11⋯O17 0.90 1.82 2.6007 (18) 144
C10—H10⋯O11ii 0.95 2.38 3.310 (2) 165
C16—H16⋯O17iii 0.96 2.48 3.291 (2) 143
C20—H20⋯O1iv 0.95 2.46 3.340 (2) 154

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

We acknowledge support of this work by Griffith University, the Queensland University of Technology, the Eskitis Institute for Cell and Mol­ecular Therapies, and the Institute for Glycomics.

supplementary crystallographic information

Comment

In an attempt to identify new antibacterial compounds, we have assembled a diverse range of azide and alkyne coupling partners for the purpose of creating compound libraries using Cu(I)-mediated azide-alkyne cycloadditions [CuAAC] (Houston et al., 2008; Wilkinson et al., 2009). Salicylates such as bismuth subsalicylate have been used for many years to treat diarrhea and other gastrointestinal disorders (Sox & Olson, 1989). We required a core salicylate scaffold that could be readily transformed into a variety of derivatives. Here, we describe the synthesis and X-ray crystal structure of 2'-propynyl 2-hydroxybenzoate (propargyl salicylate) (I) using our chemoselective method of boric acid-mediated esterification (Houston et al., 2004; 2007). Borate can activate hydroxycarboxylic acids such as salicylate toward esterification under mild conditions that are tolerant to acid-labile functional groups such as alkynes. This ester was previously synthesized by alkylation for the synthesis of cobalt carbonyl complexes and study of their anti-tumour activity (Jung et al., 1997).

Compound (I) was synthesized cleanly from salicylic acid and propargyl alcohol in 55% yield using 10 mol% boric acid in acetonitrile (Levonis et al., 2007) (Fig. 1), and crystallizes from toluene with two independent molecules in the asymmetric unit (Fig. 2). The ester group adopts the transoid arrangement (Wilkinson et al., 2006) as stereoelectronic requirements are met when the carbonyl bifurcates the methylene H atoms (Wiberg & Laidig, 1987). This allows both p →π and n →σ* overlap from the propargylated oxygen to the carbonyl. The propynyl groups are co-planar with the 2-hydroxybenzoate; with the intra-molecular O—H···O hydrogen bond between the phenolic proton and the carbonyl oxygen providing rigidity to the structure (Table 1). These factors result in the extension of the propynyl group away from the aromatic core and ensures that the reactivity of the alkyne when using the CuAAC method is not compromised by steric constraints. In the crystal lattice, the propynyl groups form inter-molecular C—H···O interactions with the phenolic oxygen (Table 1). Supramolecular chains along the direction of the b axis are found for both molecules with links by weak O1—H1···O7 (molecule A) and C16—H16···O17 (molecule B) inter-molecular interactions (Table 1, Fig. 3).

Experimental

To a stirred solution of salicylic acid (208 mg, 1.5 mmol) and propargyl alcohol (84 mg, 174 mL,3.0 mmol) in acetonitrile (3 ml) was added boric acid (9 mg, 0.15 mmol). The solution was heated and maintained at reflux for 16 h before concentrating in vacuo. Flash column chromatography was performed on silica using ethyl acetate as the mobile phase to yield 145 mg(55%) of (I) as a white solid. This was initially recrystallized from MeOH to furnish white needles (31%) for NMR analysis. A second recrystallization from toluene at 0°C produced single crystals suitable for X-ray diffraction analysis.

1H NMR (CDCl3 300 MHz, 298 K) δ p.p.m. 2.53 (t, J = 2.4 Hz, 1H), 4.91 (s, 2H), 6.87 (ddd, J = 8.1, 7.35, 1.2 Hz, 1H), 6.96 (dd, J = 8.4, 0.9 Hz, 1H), 7.45 (ddd, J = 8.4, 7.2, 1.8 Hz, 1H), 7.85 (dd, J = 7.9, 1.8 Hz, 1H), 10.5 (s, 1H). 13C{1H} NMR (CD3OD, 75 MHz, 298 K) δ p.p.m. 53.7, 77.1, 78.3, 113.2, 118.5, 120.4, 130.9, 137.0, 162.9 170.5. MS(ESI–) 175.1 [M—H+]

Refinement

H atoms were positioned geometrically, with C–H = 0.95 - 0.96 Å and O—H = 0.90 Å, and refined as riding on their parent atoms with Uiso(H) = 1.2Ueq.

Figures

Fig. 1.

Fig. 1.

Reaction scheme for the preparation of the title compound (I).

Fig. 2.

Fig. 2.

View of the two independent molecules in (I) with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 40% probability level.

Fig. 3.

Fig. 3.

Crystal packing in the structure of (I), viewed down the c axis.

Crystal data

C10H8O3 F(000) = 736
Mr = 176.16 Dx = 1.351 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ybc Cell parameters from 3378 reflections
a = 18.7150 (14) Å θ = 3.2–25.0°
b = 12.7972 (10) Å µ = 0.10 mm1
c = 7.2310 (7) Å T = 296 K
β = 90.191 (8)° Block, colourless
V = 1731.8 (3) Å3 0.36 × 0.30 × 0.12 mm
Z = 8

Data collection

Oxford-Diffraction GEMINI S Ultra diffractometer 3081 independent reflections
Radiation source: Enhance (Mo) X-ray Source 1941 reflections with I > 2σ(I)
graphite Rint = 0.031
Detector resolution: 16.0774 pixels mm-1 θmax = 25.2°, θmin = 3.2°
ω and φ scans h = −22→22
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) k = −15→15
Tmin = 0.965, Tmax = 0.988 l = −8→8
10756 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098 H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0531P)2] where P = (Fo2 + 2Fc2)/3
3081 reflections (Δ/σ)max = 0.001
235 parameters Δρmax = 0.14 e Å3
0 restraints Δρmin = −0.14 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.47564 (6) 0.17697 (9) 0.12869 (19) 0.0639 (5)
O7 0.57032 (6) 0.02715 (9) 0.10015 (17) 0.0548 (5)
O8 0.68501 (5) 0.06996 (8) 0.06527 (16) 0.0471 (4)
C1 0.53250 (9) 0.24189 (13) 0.1244 (2) 0.0435 (6)
C2 0.60284 (8) 0.20595 (12) 0.1059 (2) 0.0370 (5)
C3 0.65779 (8) 0.27917 (13) 0.1010 (2) 0.0464 (6)
C4 0.64437 (10) 0.38407 (14) 0.1112 (3) 0.0554 (7)
C5 0.57450 (11) 0.41802 (14) 0.1295 (3) 0.0580 (7)
C6 0.51933 (9) 0.34830 (14) 0.1376 (2) 0.0535 (7)
C7 0.61613 (8) 0.09414 (12) 0.0911 (2) 0.0387 (6)
C8 0.69957 (9) −0.04016 (13) 0.0400 (3) 0.0529 (7)
C9 0.77295 (9) −0.05066 (13) −0.0228 (2) 0.0497 (7)
C10 0.83132 (10) −0.06146 (15) −0.0747 (3) 0.0633 (8)
O11 1.00806 (6) 0.04958 (11) 0.2637 (2) 0.0843 (6)
O17 0.91622 (6) −0.09764 (10) 0.33340 (19) 0.0675 (5)
O18 0.80791 (6) −0.05357 (8) 0.43315 (15) 0.0496 (4)
C11 0.95424 (9) 0.11680 (14) 0.3039 (3) 0.0528 (7)
C12 0.88641 (8) 0.08199 (13) 0.3537 (2) 0.0428 (6)
C13 0.83356 (9) 0.15589 (13) 0.3864 (2) 0.0516 (7)
C14 0.84724 (10) 0.26037 (15) 0.3751 (3) 0.0624 (8)
C15 0.91532 (11) 0.29250 (15) 0.3294 (3) 0.0661 (8)
C16 0.96819 (10) 0.22262 (16) 0.2939 (3) 0.0641 (8)
C17 0.87317 (9) −0.02986 (13) 0.3700 (2) 0.0453 (6)
C18 0.79398 (10) −0.16364 (13) 0.4549 (3) 0.0561 (7)
C19 0.72292 (10) −0.17626 (13) 0.5328 (2) 0.0513 (7)
C20 0.66642 (10) −0.19093 (15) 0.5941 (3) 0.0627 (8)
H1 0.48950 0.11110 0.10160 0.0760*
H3 0.70590 0.25560 0.08950 0.0550*
H4 0.68250 0.43350 0.10570 0.0670*
H5 0.56540 0.49150 0.13700 0.0690*
H6 0.47180 0.37330 0.15270 0.0630*
H8A 0.69370 −0.07620 0.15400 0.0630*
H8B 0.66820 −0.06890 −0.04980 0.0630*
H10 0.87890 −0.07030 −0.11700 0.0750*
H11 0.99390 −0.01650 0.28820 0.0990*
H13 0.78680 0.13280 0.42100 0.0610*
H14 0.81070 0.31060 0.39670 0.0750*
H15 0.92580 0.36530 0.32450 0.0790*
H16 1.01500 0.24600 0.26110 0.0790*
H18A 0.79640 −0.19700 0.33770 0.0640*
H18B 0.82850 −0.19340 0.53560 0.0640*
H20 0.62010 −0.20280 0.64430 0.0760*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0381 (7) 0.0519 (8) 0.1017 (11) −0.0002 (6) 0.0130 (6) −0.0085 (7)
O7 0.0394 (7) 0.0389 (7) 0.0862 (10) −0.0057 (6) 0.0079 (6) 0.0033 (6)
O8 0.0360 (6) 0.0325 (7) 0.0728 (8) 0.0015 (5) 0.0047 (6) −0.0034 (5)
C1 0.0414 (10) 0.0436 (11) 0.0456 (11) 0.0020 (8) 0.0048 (8) −0.0021 (8)
C2 0.0388 (9) 0.0340 (9) 0.0381 (10) 0.0011 (7) 0.0050 (7) 0.0004 (7)
C3 0.0418 (10) 0.0402 (11) 0.0574 (12) −0.0010 (8) 0.0100 (8) −0.0030 (8)
C4 0.0619 (12) 0.0377 (11) 0.0668 (14) −0.0063 (9) 0.0118 (10) −0.0065 (9)
C5 0.0769 (14) 0.0356 (11) 0.0614 (13) 0.0098 (10) 0.0049 (10) −0.0041 (9)
C6 0.0504 (11) 0.0489 (12) 0.0612 (13) 0.0144 (9) 0.0068 (9) −0.0059 (9)
C7 0.0343 (9) 0.0388 (10) 0.0431 (10) −0.0016 (8) 0.0025 (7) 0.0002 (8)
C8 0.0461 (10) 0.0331 (10) 0.0794 (14) 0.0048 (8) 0.0039 (9) −0.0018 (9)
C9 0.0470 (11) 0.0380 (11) 0.0641 (13) 0.0043 (8) 0.0025 (9) −0.0048 (9)
C10 0.0509 (12) 0.0542 (13) 0.0847 (15) 0.0051 (10) 0.0100 (11) −0.0090 (10)
O11 0.0449 (8) 0.0664 (10) 0.1419 (14) 0.0016 (7) 0.0332 (8) −0.0043 (9)
O17 0.0504 (8) 0.0455 (8) 0.1068 (12) 0.0114 (6) 0.0168 (7) −0.0037 (7)
O18 0.0498 (7) 0.0343 (7) 0.0649 (8) −0.0014 (5) 0.0163 (6) 0.0002 (5)
C11 0.0421 (10) 0.0540 (12) 0.0624 (13) −0.0011 (9) 0.0113 (9) −0.0022 (9)
C12 0.0413 (9) 0.0418 (10) 0.0454 (11) −0.0025 (8) 0.0078 (8) −0.0011 (8)
C13 0.0455 (10) 0.0427 (11) 0.0667 (13) −0.0010 (8) 0.0172 (9) 0.0000 (8)
C14 0.0636 (13) 0.0421 (12) 0.0817 (15) 0.0012 (10) 0.0155 (11) 0.0021 (10)
C15 0.0756 (14) 0.0418 (11) 0.0810 (15) −0.0126 (11) 0.0095 (12) 0.0039 (10)
C16 0.0517 (12) 0.0622 (14) 0.0785 (15) −0.0170 (10) 0.0158 (10) 0.0031 (11)
C17 0.0406 (10) 0.0439 (11) 0.0513 (12) 0.0025 (8) 0.0059 (8) −0.0013 (8)
C18 0.0615 (12) 0.0350 (11) 0.0718 (13) 0.0001 (9) 0.0112 (10) 0.0010 (9)
C19 0.0570 (12) 0.0366 (11) 0.0602 (12) −0.0055 (9) 0.0079 (9) 0.0017 (8)
C20 0.0575 (12) 0.0481 (12) 0.0826 (15) −0.0045 (10) 0.0124 (11) 0.0012 (10)

Geometric parameters (Å, °)

O1—C1 1.351 (2) C5—H5 0.9600
O7—C7 1.2143 (19) C6—H6 0.9500
O8—C7 1.3394 (18) C8—H8B 0.9500
O8—C8 1.447 (2) C8—H8A 0.9500
O1—H1 0.9000 C10—H10 0.9500
O11—C11 1.357 (2) C11—C12 1.394 (2)
O17—C17 1.214 (2) C11—C16 1.381 (3)
O18—C17 1.340 (2) C12—C17 1.458 (2)
O18—C18 1.441 (2) C12—C13 1.389 (2)
O11—H11 0.9000 C13—C14 1.364 (3)
C1—C6 1.387 (2) C14—C15 1.380 (3)
C1—C2 1.401 (2) C15—C16 1.359 (3)
C2—C3 1.392 (2) C18—C19 1.455 (3)
C2—C7 1.456 (2) C19—C20 1.163 (3)
C3—C4 1.368 (2) C13—H13 0.9600
C4—C5 1.385 (3) C14—H14 0.9500
C5—C6 1.366 (3) C15—H15 0.9500
C8—C9 1.454 (2) C16—H16 0.9600
C9—C10 1.165 (3) C18—H18A 0.9500
C3—H3 0.9500 C18—H18B 0.9500
C4—H4 0.9500 C20—H20 0.9500
O1···O7 2.6193 (16) C20···O1ii 3.340 (2)
O1···O7i 3.2081 (17) C20···C8xi 3.519 (3)
O1···C20ii 3.340 (2) C3···H13iv 2.9700
O7···O1i 3.2081 (17) C4···H13iv 3.0100
O7···O1 2.6193 (16) C7···H1 2.3800
O7···C6iii 3.416 (2) C13···H3vii 3.0300
O7···O7i 3.0795 (17) C14···H3vii 3.0800
O8···C4iv 3.419 (2) C15···H11x 3.1000
O11···O17 2.6007 (18) C17···H11 2.3400
O11···C10v 3.310 (2) C18···H8A 3.0800
O17···O11 2.6007 (18) C19···H18Axi 3.0600
O17···C16vi 3.291 (2) C19···H8A 3.0700
O17···C10 3.379 (3) C20···H8Bxii 3.0100
O18···C9 3.3593 (18) C20···H8Axi 3.0500
O1···H20ii 2.4600 H1···O7 1.8600
O7···H6iii 2.7800 H1···C7 2.3800
O7···H8B 2.4600 H1···O7i 2.5500
O7···H1 1.8600 H3···C13iv 3.0300
O7···H8A 2.6900 H3···C14iv 3.0800
O7···H1i 2.5500 H3···H13iv 2.4100
O8···H3 2.4100 H3···H14iv 2.5500
O11···H15vi 2.7400 H3···O8 2.4100
O11···H10v 2.3800 H4···H13iv 2.5200
O17···H11 1.8200 H6···O7viii 2.7800
O17···H18A 2.5800 H8A···C18 3.0800
O17···H18B 2.5200 H8A···C19 3.0700
O17···H16vi 2.4800 H8A···C20ix 3.0500
O18···H13 2.4200 H8A···O7 2.6900
C4···O8vii 3.419 (2) H8B···C20xiii 3.0100
C4···C7vii 3.523 (3) H8B···O7 2.4600
C5···C7vii 3.429 (3) H10···O11v 2.3800
C6···O7viii 3.416 (2) H11···O17 1.8200
C7···C4iv 3.523 (3) H11···C17 2.3400
C7···C5iv 3.429 (3) H11···C15vi 3.1000
C8···C20ix 3.519 (3) H11···H15vi 2.2800
C9···C17 3.409 (2) H13···O18 2.4200
C9···O18 3.3593 (18) H13···C3vii 2.9700
C10···O11v 3.310 (2) H13···C4vii 3.0100
C10···C18ix 3.593 (3) H13···H3vii 2.4100
C10···C17 3.332 (3) H13···H4vii 2.5200
C10···O17 3.379 (3) H14···H3vii 2.5500
C14···C15vii 3.584 (3) H15···O11x 2.7400
C15···C14iv 3.584 (3) H15···H11x 2.2800
C15···C16vii 3.504 (3) H16···O17x 2.4800
C16···O17x 3.291 (2) H18A···O17 2.5800
C16···C15iv 3.504 (3) H18A···C19ix 3.0600
C17···C9 3.409 (2) H18B···O17 2.5200
C17···C10 3.332 (3) H20···O1ii 2.4600
C18···C10xi 3.593 (3)
C7—O8—C8 115.11 (12) O8—C8—H8A 110.00
C1—O1—H1 110.00 C9—C10—H10 180.00
C17—O18—C18 115.08 (13) O11—C11—C16 118.02 (16)
C11—O11—H11 109.00 C12—C11—C16 119.96 (16)
O1—C1—C6 117.52 (15) O11—C11—C12 122.01 (16)
O1—C1—C2 122.74 (15) C11—C12—C13 118.42 (15)
C2—C1—C6 119.73 (15) C11—C12—C17 119.34 (15)
C1—C2—C3 118.42 (14) C13—C12—C17 122.24 (14)
C1—C2—C7 119.36 (14) C12—C13—C14 121.55 (16)
C3—C2—C7 122.22 (14) C13—C14—C15 118.69 (17)
C2—C3—C4 121.57 (15) C14—C15—C16 121.51 (18)
C3—C4—C5 119.13 (16) C11—C16—C15 119.84 (18)
C4—C5—C6 120.89 (17) O17—C17—O18 121.26 (15)
C1—C6—C5 120.25 (16) O17—C17—C12 124.83 (15)
O7—C7—O8 121.63 (14) O18—C17—C12 113.91 (14)
O7—C7—C2 124.67 (14) O18—C18—C19 108.46 (14)
O8—C7—C2 113.70 (13) C18—C19—C20 177.08 (19)
O8—C8—C9 107.93 (13) C12—C13—H13 119.00
C8—C9—C10 178.35 (19) C14—C13—H13 119.00
C2—C3—H3 119.00 C13—C14—H14 121.00
C4—C3—H3 119.00 C15—C14—H14 120.00
C5—C4—H4 120.00 C14—C15—H15 119.00
C3—C4—H4 121.00 C16—C15—H15 119.00
C4—C5—H5 119.00 C11—C16—H16 120.00
C6—C5—H5 120.00 C15—C16—H16 121.00
C1—C6—H6 120.00 O18—C18—H18A 109.00
C5—C6—H6 119.00 O18—C18—H18B 110.00
O8—C8—H8B 110.00 C19—C18—H18A 110.00
C9—C8—H8A 110.00 C19—C18—H18B 110.00
H8A—C8—H8B 109.00 H18A—C18—H18B 109.00
C9—C8—H8B 109.00 C19—C20—H20 180.00
C8—O8—C7—O7 3.0 (2) C2—C3—C4—C5 0.9 (3)
C8—O8—C7—C2 −176.81 (14) C3—C4—C5—C6 0.1 (3)
C7—O8—C8—C9 168.65 (13) C4—C5—C6—C1 −1.1 (3)
C18—O18—C17—O17 0.6 (2) O11—C11—C12—C13 −177.77 (16)
C18—O18—C17—C12 −178.56 (14) O11—C11—C12—C17 2.3 (3)
C17—O18—C18—C19 177.13 (13) C16—C11—C12—C13 2.1 (3)
C6—C1—C2—C7 −179.66 (13) C16—C11—C12—C17 −177.86 (17)
O1—C1—C6—C5 −178.39 (16) O11—C11—C16—C15 178.65 (19)
C2—C1—C6—C5 1.1 (2) C12—C11—C16—C15 −1.2 (3)
O1—C1—C2—C7 −0.2 (2) C11—C12—C13—C14 −1.6 (2)
C6—C1—C2—C3 −0.1 (2) C17—C12—C13—C14 178.33 (16)
O1—C1—C2—C3 179.35 (14) C11—C12—C17—O17 −4.3 (2)
C1—C2—C3—C4 −0.9 (2) C11—C12—C17—O18 174.83 (15)
C7—C2—C3—C4 178.62 (16) C13—C12—C17—O17 175.82 (15)
C3—C2—C7—O8 −2.5 (2) C13—C12—C17—O18 −5.1 (2)
C1—C2—C7—O7 −2.8 (2) C12—C13—C14—C15 0.2 (3)
C1—C2—C7—O8 177.01 (13) C13—C14—C15—C16 0.7 (3)
C3—C2—C7—O7 177.69 (15) C14—C15—C16—C11 −0.2 (3)

Symmetry codes: (i) −x+1, −y, −z; (ii) −x+1, −y, −z+1; (iii) −x+1, y−1/2, −z+1/2; (iv) x, −y+1/2, z−1/2; (v) −x+2, −y, −z; (vi) −x+2, y−1/2, −z+1/2; (vii) x, −y+1/2, z+1/2; (viii) −x+1, y+1/2, −z+1/2; (ix) x, −y−1/2, z−1/2; (x) −x+2, y+1/2, −z+1/2; (xi) x, −y−1/2, z+1/2; (xii) x, y, z+1; (xiii) x, y, z−1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···O7 0.90 1.86 2.6193 (16) 141
O1—H1···O7i 0.90 2.55 3.2081 (17) 130
O11—H11···O17 0.90 1.82 2.6007 (18) 144
C10—H10···O11v 0.95 2.38 3.310 (2) 165
C16—H16···O17x 0.960 2.48 3.291 (2) 143
C20—H20···O1ii 0.95 2.46 3.340 (2) 154

Symmetry codes: (i) −x+1, −y, −z; (v) −x+2, −y, −z; (x) −x+2, y+1/2, −z+1/2; (ii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2601).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Houston, T. A., Levonis, S. M. & Kiefel, M. J. (2007). Aust. J. Chem.60, 811–815.
  4. Houston, T. A., Quader, S., Boyd, S. E., Jenkins, I. D. & Healy, P. C. (2008). Acta Cryst. E64, o1738. [DOI] [PMC free article] [PubMed]
  5. Houston, T. A., Wilkinson, B. L. & Blanchfield, J. T. (2004). Org. Lett.6, 678–681. [DOI] [PubMed]
  6. Jung, M., Kerr, D. E. & Senter, P. D. (1997). Archiv. Der Pharm.330, 173–176. [DOI] [PubMed]
  7. Levonis, S. M., Bornaghi, L. F. & Houston, T. A. (2007). Aust. J. Chem.60, 821–823.
  8. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Sox, T. E. & Olson, C. A. (1989). Antimicrob. Agents Chemother.33, 2075–2082. [DOI] [PMC free article] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Westrip, S. P. (2010). publCIF In preparation.
  13. Wiberg, K. B. & Laidig, K. E. (1987). J. Am. Chem. Soc.109, 5935–5943.
  14. Wilkinson, B. L., Bornaghi, L. F., Houston, T. A. & Poulsen, S.-A. (2009). Click Chemistry in Carbohydrate Based Drug Development and Glycobiology: An Update in Glycobiology Research Trends, edited by G. Powell & O. McCabe, pp. 127–172. New York: Nova Science Publishers.
  15. Wilkinson, B. L., Bornaghi, L. F., Houston, T. A., Poulsen, S.-A. & White, A. R. (2006). Acta Cryst. E62, o5065–o5067.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680905421X/tk2601sup1.cif

e-66-0o226-sup1.cif (22.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680905421X/tk2601Isup2.hkl

e-66-0o226-Isup2.hkl (151.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES