Abstract
In the title hydrate, C17H14ClN3O·H2O, the dihedral angle between the quinoline fused-ring system and the benzene ring is 13.4 (2)° and the conformation about the C=N bond is E. In the crystal, Nh—H⋯Ow and Ow—H⋯Nq (h = hydrozone, w = water and q = quinoline) hydrogen bonds generate a two-dimenstional network in the ac plane. A weak C—H⋯O interaction helps to consolidate the packing.
Related literature
For background to the pharmacological activity of quinoline derivatives, see: Warshakoon et al. (2006 ▶). For recent studies into quinoline-based anti-malarials, see: Andrade et al. (2007 ▶); de Souza et al. (2005 ▶). For related structures, see: Kaiser et al. (2009 ▶); de Souza et al. (2009 ▶, 2010 ▶). For the structure of the isomeric 2-methoxy structure, see: de Lima Ferreira et al. (2010 ▶).
Experimental
Crystal data
C17H14ClN3O·H2O
M r = 329.78
Monoclinic,
a = 3.9202 (2) Å
b = 24.5084 (17) Å
c = 16.1212 (11) Å
β = 91.639 (4)°
V = 1548.26 (17) Å3
Z = 4
Mo Kα radiation
μ = 0.26 mm−1
T = 120 K
0.62 × 0.03 × 0.02 mm
Data collection
Nonius KappaCCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2007 ▶) T min = 0.735, T max = 0.995
11507 measured reflections
2716 independent reflections
1769 reflections with I > 2σ(I)
R int = 0.096
Refinement
R[F 2 > 2σ(F 2)] = 0.093
wR(F 2) = 0.260
S = 1.04
2716 reflections
215 parameters
H atoms treated by a mixture of independent and constrained refinement
Δρmax = 0.40 e Å−3
Δρmin = −0.45 e Å−3
Data collection: COLLECT (Hooft, 1998 ▶); cell refinement: DENZO (Otwinowski & Minor, 1997 ▶) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 (Farrugia, 1997 ▶) and DIAMOND (Brandenburg, 2006 ▶); software used to prepare material for publication: publCIF (Westrip, 2010 ▶).
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810006586/hb5340sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810006586/hb5340Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
---|---|---|---|---|
N2—H2N⋯O1W | 0.88 | 2.08 | 2.928 (7) | 161 |
O1W—H1W⋯N1i | 0.81 (9) | 2.30 (9) | 3.030 (8) | 150 (8) |
O1W—H2W⋯N1ii | 0.82 (9) | 2.03 (9) | 2.820 (7) | 163 (8) |
C5—H5⋯O1W | 0.95 | 2.43 | 3.358 (8) | 166 |
Symmetry codes: (i) ; (ii)
.
Acknowledgments
The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).
supplementary crystallographic information
Comment
Quinoline derivatives are known to display pharmacological potential (Warshakoon et al., 2006) and are being investigated for their anti-malarial activity (Andrade et al. 2007; de Souza et al., 2005). Structural studies on quinoline derivatives augment the biological investigations (Kaiser et al., 2009; de Souza et al., 2009; de Souza et al., 2010; de Lima Ferreira et al., 2010) and as a part of these studies, the crystal structure of the title hydrate, (I), was investigated.
The most significant twist in the quinoline molecule of (I), Fig. 1, occurs around the C10–C11 bond as seen in the N3–C10–C11–C16 torsion angle of 6.9 (9) °. This accounts for the dihedral angle of 13.4 (2) ° formed between the quinoline fused-ring system and the benzene ring. The conformation about the C10═N3 bond [1.282 (8) Å] is E. The crystal packing is stabilised by a variety of hydrogen bonding interactions, Table 1. The water molecule accepts a hydrogen bond from the hydrazone-N2 atom and bridges two symmetry related molecules by forming donor interactions with quinoline-N1 atoms; the water-O atom also participates in a C–H···O contact, Table 1. The result of the hydrogen bonding is the formation of a 2-D supramolecular array in the ac plane, Fig. 2, and these stack along the b axis, Fig. 3.
Experimental
A solution of 7-chloro-4-quinolinylhydrazine(0.2 g, 1.03 mmol) and 2-methoxybenzaldehyde (1.2 mmol) in EtOH (5 ml) was maintained at room temperature overnight and rotary evaporated. The solid residue, was washed with cold Et2O (3 x 10 ml) and recrystallised from EtOH; m.pt. 459-461 K, yield 82%. The sample for the X-ray study was slowly grown from moist EtOH and was found to be the monohydrate. MS/ESI: [M—H]: 310.8. IR νmax (cm-1; KBr disc): 3190 (N—H), 1578 (C=N).
Refinement
The N- and C-bound H atoms were geometrically placed (N–H = 0.88 Å and C–H = 0.95–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C,N). The water-bound H atoms were located from a difference map and refined with Uiso(H) = 1.5Ueq(O).
Figures
Fig. 1.
Molecular structures of the asymmetric unit in (I) showing displacement ellipsoids at the 50% probability level.
Fig. 2.
View of the 2-D supramolecular array in the ac plane of (I) showing the O–H···N and N–H···O hydrogen bonding as orange and blue dashed lines, respectively. Colour code: Cl, cyan; O, red; N, blue; C, grey; and H, green.
Fig. 3.
A view of the stacking of layers in (I). The O–H···N and N–H···O hydrogen bonding as orange and blue dashed lines, respectively. Colour code: Cl, cyan; O, red; N, blue; C, grey; and H, green.
Crystal data
C17H14ClN3O·H2O | F(000) = 688 |
Mr = 329.78 | Dx = 1.415 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 9260 reflections |
a = 3.9202 (2) Å | θ = 2.9–27.5° |
b = 24.5084 (17) Å | µ = 0.26 mm−1 |
c = 16.1212 (11) Å | T = 120 K |
β = 91.639 (4)° | Needle, colourless |
V = 1548.26 (17) Å3 | 0.62 × 0.03 × 0.02 mm |
Z = 4 |
Data collection
Nonius KappaCCD diffractometer | 2716 independent reflections |
Radiation source: Enraf Nonius FR591 rotating anode | 1769 reflections with I > 2σ(I) |
10 cm confocal mirrors | Rint = 0.096 |
Detector resolution: 9.091 pixels mm-1 | θmax = 25.0°, θmin = 3.0° |
φ and ω scans | h = −4→4 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) | k = −29→29 |
Tmin = 0.735, Tmax = 0.995 | l = −19→19 |
11507 measured reflections |
Refinement
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.093 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.260 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.1P)2 + 10.4045P] where P = (Fo2 + 2Fc2)/3 |
2716 reflections | (Δ/σ)max = 0.001 |
215 parameters | Δρmax = 0.40 e Å−3 |
0 restraints | Δρmin = −0.45 e Å−3 |
Special details
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.0208 (4) | 0.57108 (6) | 0.05313 (10) | 0.0256 (5) | |
O1 | 1.3298 (11) | 0.93299 (18) | 0.2940 (3) | 0.0232 (10) | |
N1 | 0.1966 (13) | 0.7497 (2) | −0.0985 (3) | 0.0201 (12) | |
N2 | 0.6619 (13) | 0.8261 (2) | 0.1080 (3) | 0.0214 (12) | |
H2N | 0.6968 | 0.8080 | 0.1547 | 0.026* | |
N3 | 0.7680 (12) | 0.8795 (2) | 0.1015 (3) | 0.0195 (12) | |
C1 | 0.2920 (16) | 0.8018 (3) | −0.0989 (4) | 0.0232 (15) | |
H1 | 0.2504 | 0.8220 | −0.1484 | 0.028* | |
C2 | 0.4479 (15) | 0.8288 (2) | −0.0322 (4) | 0.0183 (13) | |
H2 | 0.5157 | 0.8658 | −0.0377 | 0.022* | |
C3 | 0.5046 (15) | 0.8016 (2) | 0.0426 (4) | 0.0203 (14) | |
C4 | 0.3926 (15) | 0.7459 (2) | 0.0470 (4) | 0.0176 (13) | |
C5 | 0.4234 (15) | 0.7141 (3) | 0.1204 (4) | 0.0223 (14) | |
H5 | 0.5240 | 0.7296 | 0.1692 | 0.027* | |
C6 | 0.3094 (16) | 0.6611 (2) | 0.1217 (4) | 0.0206 (14) | |
H6 | 0.3293 | 0.6402 | 0.1712 | 0.025* | |
C7 | 0.1640 (15) | 0.6384 (2) | 0.0496 (4) | 0.0176 (13) | |
C8 | 0.1307 (16) | 0.6672 (3) | −0.0225 (4) | 0.0213 (14) | |
H8 | 0.0329 | 0.6504 | −0.0707 | 0.026* | |
C9 | 0.2419 (15) | 0.7222 (2) | −0.0257 (4) | 0.0180 (13) | |
C10 | 0.9303 (15) | 0.8980 (3) | 0.1657 (4) | 0.0211 (14) | |
H10 | 0.9774 | 0.8745 | 0.2115 | 0.025* | |
C11 | 1.0442 (14) | 0.9551 (2) | 0.1693 (4) | 0.0164 (13) | |
C12 | 1.2380 (14) | 0.9726 (2) | 0.2387 (4) | 0.0181 (14) | |
C13 | 1.3295 (16) | 1.0271 (3) | 0.2466 (4) | 0.0237 (15) | |
H13 | 1.4596 | 1.0391 | 0.2938 | 0.028* | |
C14 | 1.2299 (16) | 1.0641 (3) | 0.1851 (4) | 0.0222 (14) | |
H14 | 1.2908 | 1.1014 | 0.1909 | 0.027* | |
C15 | 1.0422 (16) | 1.0471 (3) | 0.1152 (4) | 0.0249 (15) | |
H15 | 0.9778 | 1.0725 | 0.0731 | 0.030* | |
C16 | 0.9495 (15) | 0.9922 (2) | 0.1078 (4) | 0.0212 (14) | |
H16 | 0.8211 | 0.9802 | 0.0604 | 0.025* | |
C17 | 1.5235 (16) | 0.9495 (3) | 0.3666 (4) | 0.0242 (15) | |
H17A | 1.7439 | 0.9642 | 0.3501 | 0.036* | |
H17B | 1.5613 | 0.9179 | 0.4030 | 0.036* | |
H17C | 1.3976 | 0.9777 | 0.3962 | 0.036* | |
O1W | 0.7223 (14) | 0.7893 (2) | 0.2807 (3) | 0.0304 (12) | |
H1W | 0.53 (2) | 0.785 (3) | 0.300 (5) | 0.046* | |
H2W | 0.89 (2) | 0.780 (3) | 0.309 (5) | 0.046* |
Atomic displacement parameters (Å2)
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0319 (9) | 0.0186 (8) | 0.0263 (9) | −0.0044 (7) | −0.0002 (7) | 0.0044 (7) |
O1 | 0.028 (2) | 0.023 (2) | 0.018 (2) | 0.0005 (19) | −0.0047 (18) | −0.001 (2) |
N1 | 0.027 (3) | 0.019 (3) | 0.015 (3) | −0.002 (2) | −0.003 (2) | 0.002 (2) |
N2 | 0.027 (3) | 0.020 (3) | 0.017 (3) | −0.002 (2) | −0.003 (2) | 0.002 (2) |
N3 | 0.022 (3) | 0.015 (3) | 0.022 (3) | −0.002 (2) | 0.004 (2) | −0.002 (2) |
C1 | 0.026 (3) | 0.026 (4) | 0.017 (4) | 0.000 (3) | −0.005 (3) | 0.008 (3) |
C2 | 0.023 (3) | 0.015 (3) | 0.017 (3) | −0.001 (2) | 0.004 (3) | −0.004 (3) |
C3 | 0.018 (3) | 0.020 (3) | 0.022 (4) | 0.002 (3) | −0.003 (3) | −0.004 (3) |
C4 | 0.016 (3) | 0.020 (3) | 0.017 (3) | 0.001 (2) | 0.005 (2) | 0.001 (3) |
C5 | 0.023 (3) | 0.025 (3) | 0.019 (4) | 0.002 (3) | −0.002 (3) | 0.000 (3) |
C6 | 0.029 (3) | 0.015 (3) | 0.018 (4) | 0.002 (3) | 0.001 (3) | −0.001 (3) |
C7 | 0.019 (3) | 0.017 (3) | 0.018 (3) | 0.002 (2) | 0.008 (2) | −0.002 (3) |
C8 | 0.023 (3) | 0.024 (3) | 0.017 (4) | −0.004 (3) | −0.004 (3) | −0.001 (3) |
C9 | 0.023 (3) | 0.016 (3) | 0.015 (3) | 0.000 (2) | −0.002 (3) | −0.002 (3) |
C10 | 0.019 (3) | 0.021 (3) | 0.023 (4) | 0.001 (3) | 0.002 (3) | 0.005 (3) |
C11 | 0.014 (3) | 0.016 (3) | 0.018 (3) | −0.004 (2) | 0.001 (2) | −0.003 (3) |
C12 | 0.014 (3) | 0.019 (3) | 0.022 (4) | 0.001 (2) | 0.006 (2) | −0.004 (3) |
C13 | 0.027 (3) | 0.026 (3) | 0.018 (4) | −0.001 (3) | 0.000 (3) | 0.001 (3) |
C14 | 0.026 (3) | 0.015 (3) | 0.026 (4) | −0.007 (3) | 0.011 (3) | −0.003 (3) |
C15 | 0.027 (3) | 0.019 (3) | 0.029 (4) | 0.006 (3) | 0.003 (3) | 0.003 (3) |
C16 | 0.024 (3) | 0.018 (3) | 0.021 (4) | 0.001 (3) | 0.004 (3) | −0.004 (3) |
C17 | 0.022 (3) | 0.030 (4) | 0.021 (4) | −0.002 (3) | −0.002 (3) | −0.005 (3) |
O1W | 0.028 (3) | 0.039 (3) | 0.024 (3) | 0.000 (2) | −0.005 (2) | 0.004 (2) |
Geometric parameters (Å, °)
Cl1—C7 | 1.744 (6) | C7—C8 | 1.362 (9) |
O1—C12 | 1.360 (7) | C8—C9 | 1.419 (9) |
O1—C17 | 1.434 (7) | C8—H8 | 0.9500 |
N1—C1 | 1.330 (8) | C10—C11 | 1.471 (8) |
N1—C9 | 1.361 (8) | C10—H10 | 0.9500 |
N2—C3 | 1.348 (8) | C11—C16 | 1.388 (9) |
N2—N3 | 1.379 (7) | C11—C12 | 1.401 (8) |
N2—H2N | 0.8800 | C12—C13 | 1.388 (9) |
N3—C10 | 1.282 (8) | C13—C14 | 1.391 (9) |
C1—C2 | 1.389 (9) | C13—H13 | 0.9500 |
C1—H1 | 0.9500 | C14—C15 | 1.391 (9) |
C2—C3 | 1.391 (9) | C14—H14 | 0.9500 |
C2—H2 | 0.9500 | C15—C16 | 1.399 (9) |
C3—C4 | 1.436 (8) | C15—H15 | 0.9500 |
C4—C9 | 1.420 (8) | C16—H16 | 0.9500 |
C4—C5 | 1.420 (9) | C17—H17A | 0.9800 |
C5—C6 | 1.372 (9) | C17—H17B | 0.9800 |
C5—H5 | 0.9500 | C17—H17C | 0.9800 |
C6—C7 | 1.396 (9) | O1W—H1W | 0.81 (9) |
C6—H6 | 0.9500 | O1W—H2W | 0.82 (9) |
C12—O1—C17 | 117.2 (5) | N1—C9—C4 | 123.4 (5) |
C1—N1—C9 | 116.6 (5) | C8—C9—C4 | 118.6 (6) |
C3—N2—N3 | 119.7 (5) | N3—C10—C11 | 120.7 (6) |
C3—N2—H2N | 120.2 | N3—C10—H10 | 119.6 |
N3—N2—H2N | 120.2 | C11—C10—H10 | 119.6 |
C10—N3—N2 | 114.6 (5) | C16—C11—C12 | 119.9 (6) |
N1—C1—C2 | 124.9 (6) | C16—C11—C10 | 121.4 (5) |
N1—C1—H1 | 117.6 | C12—C11—C10 | 118.7 (5) |
C2—C1—H1 | 117.6 | O1—C12—C13 | 124.3 (6) |
C1—C2—C3 | 119.9 (6) | O1—C12—C11 | 115.7 (5) |
C1—C2—H2 | 120.1 | C13—C12—C11 | 120.0 (6) |
C3—C2—H2 | 120.1 | C12—C13—C14 | 119.6 (6) |
N2—C3—C2 | 121.6 (6) | C12—C13—H13 | 120.2 |
N2—C3—C4 | 121.2 (6) | C14—C13—H13 | 120.2 |
C2—C3—C4 | 117.2 (5) | C15—C14—C13 | 120.9 (6) |
C9—C4—C5 | 119.1 (5) | C15—C14—H14 | 119.5 |
C9—C4—C3 | 117.9 (5) | C13—C14—H14 | 119.5 |
C5—C4—C3 | 122.9 (6) | C14—C15—C16 | 119.1 (6) |
C6—C5—C4 | 120.8 (6) | C14—C15—H15 | 120.4 |
C6—C5—H5 | 119.6 | C16—C15—H15 | 120.4 |
C4—C5—H5 | 119.6 | C11—C16—C15 | 120.3 (6) |
C5—C6—C7 | 119.3 (6) | C11—C16—H16 | 119.8 |
C5—C6—H6 | 120.3 | C15—C16—H16 | 119.8 |
C7—C6—H6 | 120.3 | O1—C17—H17A | 109.5 |
C8—C7—C6 | 122.0 (6) | O1—C17—H17B | 109.5 |
C8—C7—Cl1 | 119.7 (5) | H17A—C17—H17B | 109.5 |
C6—C7—Cl1 | 118.3 (5) | O1—C17—H17C | 109.5 |
C7—C8—C9 | 120.1 (6) | H17A—C17—H17C | 109.5 |
C7—C8—H8 | 119.9 | H17B—C17—H17C | 109.5 |
C9—C8—H8 | 119.9 | H1W—O1W—H2W | 118 (9) |
N1—C9—C8 | 118.0 (5) | ||
C3—N2—N3—C10 | −176.6 (6) | C7—C8—C9—C4 | 1.1 (9) |
C9—N1—C1—C2 | 3.4 (9) | C5—C4—C9—N1 | 178.9 (6) |
N1—C1—C2—C3 | −2.1 (10) | C3—C4—C9—N1 | −0.4 (9) |
N3—N2—C3—C2 | 0.5 (9) | C5—C4—C9—C8 | −0.8 (9) |
N3—N2—C3—C4 | 179.6 (5) | C3—C4—C9—C8 | 179.9 (6) |
C1—C2—C3—N2 | 178.5 (6) | N2—N3—C10—C11 | −177.0 (5) |
C1—C2—C3—C4 | −0.6 (9) | N3—C10—C11—C16 | 6.9 (9) |
N2—C3—C4—C9 | −177.4 (6) | N3—C10—C11—C12 | −176.3 (6) |
C2—C3—C4—C9 | 1.7 (8) | C17—O1—C12—C13 | 2.3 (9) |
N2—C3—C4—C5 | 3.3 (9) | C17—O1—C12—C11 | −178.9 (5) |
C2—C3—C4—C5 | −177.6 (6) | C16—C11—C12—O1 | −177.5 (5) |
C9—C4—C5—C6 | 0.0 (9) | C10—C11—C12—O1 | 5.6 (8) |
C3—C4—C5—C6 | 179.3 (6) | C16—C11—C12—C13 | 1.3 (9) |
C4—C5—C6—C7 | 0.5 (9) | C10—C11—C12—C13 | −175.6 (6) |
C5—C6—C7—C8 | −0.1 (9) | O1—C12—C13—C14 | 178.2 (6) |
C5—C6—C7—Cl1 | −179.9 (5) | C11—C12—C13—C14 | −0.5 (9) |
C6—C7—C8—C9 | −0.7 (10) | C12—C13—C14—C15 | −0.6 (10) |
Cl1—C7—C8—C9 | 179.1 (5) | C13—C14—C15—C16 | 0.9 (10) |
C1—N1—C9—C8 | 177.7 (6) | C12—C11—C16—C15 | −1.0 (9) |
C1—N1—C9—C4 | −2.0 (9) | C10—C11—C16—C15 | 175.8 (6) |
C7—C8—C9—N1 | −178.6 (6) | C14—C15—C16—C11 | −0.1 (10) |
Hydrogen-bond geometry (Å, °)
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2N···O1W | 0.88 | 2.08 | 2.928 (7) | 161 |
O1W—H1W···N1i | 0.81 (9) | 2.30 (9) | 3.030 (8) | 150 (8) |
O1W—H2W···N1ii | 0.82 (9) | 2.03 (9) | 2.820 (7) | 163 (8) |
C5—H5···O1W | 0.95 | 2.43 | 3.358 (8) | 166 |
Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) x+1, −y+3/2, z+1/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5340).
References
- Andrade, A. A., Varotti, F. D., de Freitas, I. Q., de Souza, M. V. N., Vasconcelos, T. R. A., Boechat, N. & Krettli, A. U. (2007). Eur. J. Pharm 558, 194–198. [DOI] [PubMed]
- Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
- Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
- Hooft, R. W. W. (1998). COLLECT Nonius BV, Delft, The Netherlands.
- Kaiser, C. R., Pais, K. C., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1133–1140.
- Lima Ferreira, M. de, de Souza, M. V. N., Howie, R. A., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2010). Acta Cryst. E66, o696–o697. [DOI] [PMC free article] [PubMed]
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (2007). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Souza, M. V. N. de (2005). Mini-Rev. Med. Chem 5, 1009–1017.
- Souza, M. V. N. de, Howie, R. A., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2010). Acta Cryst. E66, o152–o153. [DOI] [PMC free article] [PubMed]
- Souza, M. V. N. de, Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2009). Acta Cryst. E65, o3120–o3121. [DOI] [PMC free article] [PubMed]
- Warshakoon, N. C., Sheville, J., Bhatt, R. T., Ji, W., Mendez-Andino, J. L., Meyers, K. M., Kim, N., Wos, J. A., Mitchell, C., Paris, J. L., Pinney, B. B. O., Reizes, O. & Hu, X. E. (2006). Bioorg. Med. Chem. Lett 16, 5207–5211. [DOI] [PubMed]
- Westrip, S. P. (2010). publCIF In preparation.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810006586/hb5340sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810006586/hb5340Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report