Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Jun 16;66(Pt 7):m784–m785. doi: 10.1107/S160053681002194X

Diaqua­(isonicotinamide-κN 1)(4-meth­oxy­benzoato-κ2 O,O′)(4-meth­oxy­benzoato-κO)cobalt(II)

Tuncer Hökelek a,*, Yasemin Süzen b, Barış Tercan c, Erdinç Tenlik d, Hacali Necefoğlu d
PMCID: PMC3006852  PMID: 21587710

Abstract

In the title complex, [Co(C8H7O3)2(C6H6N2O)(H2O)2], the CoII atom is coordinated by three O atoms from two 4-meth­oxy­benzoate ligands, which act in different modes, viz. monodentate and bidentate, two water mol­ecules and one N atom of the isonicotinamide ligand in a distorted octa­hedral geometry. The monodentate-coordinated carboxyl­ate group is involved in an intra­molecular O—H⋯O hydrogen bond with the coordinated water mol­ecule. In the crystal structure, inter­molecular O—H⋯O and N—H⋯O hydrogen bonds link the mol­ecules into layers parallel to the ab plane. The crystal packing is further stabilized by weak C—H⋯O hydrogen bonds and π–π inter­actions indicated by the short distance of 3.6181 (8) Å between the centroids of the benzene and pyridine rings of neighbouring mol­ecules.

Related literature

For general background to niacin and the nicotinic acid deriv­ative N,N-diethyl­nicotinamide, see: Krishnamachari (1974) and Bigoli et al. (1972), respectively. For related structures, see: Greenaway et al. (1984); Hökelek et al. (2009a ,b ,c ,d ); Necefoğlu et al. (2010).graphic file with name e-66-0m784-scheme1.jpg

Experimental

Crystal data

  • [Co(C8H7O3)2(C6H6N2O)(H2O)2]

  • M r = 519.36

  • Monoclinic, Inline graphic

  • a = 8.2666 (2) Å

  • b = 6.8055 (2) Å

  • c = 20.5415 (4) Å

  • β = 99.808 (2)°

  • V = 1138.74 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.81 mm−1

  • T = 100 K

  • 0.39 × 0.32 × 0.28 mm

Data collection

  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.739, T max = 0.791

  • 11263 measured reflections

  • 4838 independent reflections

  • 4597 reflections with I > 2σ(I)

  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.022

  • wR(F 2) = 0.050

  • S = 1.01

  • 4838 reflections

  • 333 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983), 1761 Friedel pairs

  • Flack parameter: 0.015 (7)

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681002194X/cv2727sup1.cif

e-66-0m784-sup1.cif (24.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681002194X/cv2727Isup2.hkl

e-66-0m784-Isup2.hkl (232.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2i 0.79 (3) 2.11 (3) 2.877 (2) 164.0 (17)
N2—H2B⋯O1ii 0.91 (3) 2.16 (3) 3.050 (2) 167 (2)
O8—H81⋯O4 0.83 (3) 1.84 (3) 2.6577 (17) 167 (3)
O8—H82⋯O7iii 0.89 (2) 1.86 (3) 2.7427 (16) 172 (2)
O9—H91⋯O6iv 0.786 (19) 2.078 (19) 2.8384 (16) 163 (2)
O9—H92⋯O4v 0.91 (3) 1.72 (3) 2.6307 (18) 174.1 (15)
C8—H8A⋯O7vi 0.96 2.53 3.466 (2) 166
C16—H16B⋯O4vii 0.96 2.52 3.4752 (18) 171

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Acknowledgments

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of the diffractometer. This work was supported financially by Kafkas University Research Fund (grant No. 2009-FEF-03).

supplementary crystallographic information

Comment

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound has been synthesized. Herein we report its crystal structure.

The title compound, (I), is a monomeric complex, where the CoII ion is surrounded by two methoxybenzoate (MB) anions, one isonicotinamide (INA) ligand and two coordinated water molecules. One of the MB anions acts as a bidentate ligand, while the other is monodentate. The structures of similar complexes , [Mn(C9H10NO2)2(C6H6N2O)(H2O)2] (II) (Hökelek et al., 2009a), [Co(C9H10NO2)2(C6H6N2O)(H2O)2] (III) (Hökelek et al., 2009b), [Cd(C8H7O2)2(C6H6N2O)2(H2O)].H2O (IV) (Necefoğlu et al., 2010), [Zn(C9H10NO2)2(C6H6N2O)(H2O)2] (V) (Hökelek et al., 2009c) and [Zn(C8H8NO2)2(C6H6N2O)2].H2O (VI) (Hökelek et al., 2009d) have also been determined.

In (I) (Fig. 1), the four O atoms (O1, O2, O5 and O9) in the equatorial plane around the Co1 form a highly distorted square-planar arrangement, while the distorted octahedral coordination geometry is completed by the N atom (N1) of INA ligand and the O atom (O8) of the second water molecule in the axial positions. The average Co—O bond length is 2.1171 (12) Å and the Co atom is displaced out of the least-squares planes of the carboxylate groups (O1/C1/O2) and (O4/C9/O5) by -0.0061 (2) Å and -0.5367 (2) Å, respectively. The dihedral angle between the planar carboxylate groups and the adjacent benzene rings A (C2—C7) and B (C9—C14) are 12.12 (12)° and 9.26 (13)°, respectively, while those between rings A, B and C (N1/C17—C21) are A/B = 78.18 (4), A/C = 74.20 (5) and B/C = 6.23 (5) °. The intramolecular O—H···O hydrogen bond (Table 1) between the monodentate-coordinated carboxyl group and a coordinated water molecule results in a six-membered ring D (Co1/O4/O5/O8/C9/H81) adopting envelope conformation, with atom Co1 displaced by -0.5481 (2) Å from the plane of the other ring atoms. In (I), the O1—Co1—O2 angle is 60.32 (4)°. The corresponding O—M—O (where M is a metal) angles are 54.71 (4)° in (IV), 60.03 (6)° in (V), 59.02 (8)° in (VI) and 55.2 (1)° in [Cu(Asp)2(py)2] (where Asp is acetylsalicylate and py is pyridine) [(VII); Greenaway et al., 1984].

In the crystal structure, intermolecular O—H···O and N—H···O hydrogen bonds (Table 1) link the molecules into layers parallel to ab plane. The crystal packing is further stabilized by the weak C—H···O hydrogen bonds (Table 1). The π–π contact between the benzene and pyridine rings, Cg2—Cg3i [symmetry code: (i) x, y + 1, z, where Cg2 and Cg3 are the centroids of the rings B (C9—C14) and C (N1/C17—C21), respectively] may also stabilize the structure, with centroid-centroid distance of 3.6181 (8) Å.

Experimental

The title compound was prepared by the reaction of CoSO4.7H2O (2.81 g, 10 mmol) in H2O (50 ml) and INA (2.44 g, 20 mmol) in H2O (50 ml) with sodium 4-methoxybenzoate (3.48 g, 20 mmol) in H2O (100 ml). The mixture was filtered and set aside to crystallize at ambient temperature for one week, giving brown single crystals.

Refinement

Atoms H81, H82, H91, H92 (for water molecules) and H2A, H2B (for NH2) were located in difference Fourier maps and refined isotropically. The remaining H atoms were positioned geometrically with C—H = 0.93 and 0.96 Å for aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2-1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed line indicates the hydrogen-bonding.

Crystal data

[Co(C8H7O3)2(C6H6N2O)(H2O)2] F(000) = 538
Mr = 519.36 Dx = 1.515 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 6882 reflections
a = 8.2666 (2) Å θ = 2.5–28.4°
b = 6.8055 (2) Å µ = 0.81 mm1
c = 20.5415 (4) Å T = 100 K
β = 99.808 (2)° Block, brown
V = 1138.74 (5) Å3 0.39 × 0.32 × 0.28 mm
Z = 2

Data collection

Bruker Kappa APEXII CCD area-detector diffractometer 4838 independent reflections
Radiation source: fine-focus sealed tube 4597 reflections with I > 2σ(I)
graphite Rint = 0.020
φ and ω scans θmax = 28.4°, θmin = 1.0°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −11→9
Tmin = 0.739, Tmax = 0.791 k = −8→9
11263 measured reflections l = −27→27

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.022 w = 1/[σ2(Fo2) + (0.0215P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.050 (Δ/σ)max = 0.003
S = 1.01 Δρmax = 0.29 e Å3
4838 reflections Δρmin = −0.24 e Å3
333 parameters Absolute structure: Flack (1983), 1761 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.015 (7)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co1 0.83963 (2) 0.92738 (3) 0.717117 (8) 0.01106 (5)
O1 0.87439 (13) 0.72789 (18) 0.79844 (5) 0.0132 (2)
O2 0.75818 (13) 1.01182 (18) 0.81134 (5) 0.0145 (2)
O3 0.68768 (15) 0.5746 (2) 1.08004 (5) 0.0212 (3)
O4 0.78237 (13) 0.51498 (18) 0.63163 (5) 0.0156 (2)
O5 0.95880 (13) 0.76378 (18) 0.65605 (5) 0.0146 (2)
O6 1.43741 (13) 0.13627 (18) 0.56391 (5) 0.0160 (2)
O7 1.44482 (14) 1.65456 (18) 0.77779 (5) 0.0160 (2)
O8 0.60930 (14) 0.78883 (19) 0.68139 (6) 0.0147 (2)
H81 0.652 (3) 0.692 (4) 0.6668 (10) 0.024 (6)*
H82 0.564 (3) 0.750 (4) 0.7153 (12) 0.052 (7)*
O9 0.72143 (15) 1.1511 (2) 0.66328 (6) 0.0177 (3)
H91 0.639 (2) 1.126 (4) 0.6396 (10) 0.024 (6)*
H92 0.749 (2) 1.277 (4) 0.6543 (9) 0.021 (5)*
N1 1.05301 (16) 1.0966 (2) 0.74674 (6) 0.0127 (3)
N2 1.62169 (17) 1.4016 (3) 0.79899 (7) 0.0175 (3)
H2A 1.643 (2) 1.290 (4) 0.8055 (9) 0.015 (5)*
H2B 1.708 (3) 1.486 (4) 0.8026 (10) 0.033 (6)*
C1 0.80942 (19) 0.8473 (3) 0.83434 (7) 0.0130 (3)
C2 0.79173 (19) 0.7843 (3) 0.90221 (7) 0.0140 (3)
C3 0.86387 (19) 0.6109 (3) 0.92813 (7) 0.0172 (3)
H3 0.9323 0.5420 0.9046 0.021*
C4 0.8362 (2) 0.5378 (3) 0.98853 (7) 0.0190 (4)
H4 0.8862 0.4220 1.0056 0.023*
C5 0.7328 (2) 0.6403 (3) 1.02288 (7) 0.0172 (4)
C6 0.6650 (2) 0.8189 (3) 0.99909 (8) 0.0200 (4)
H6 0.6001 0.8901 1.0235 0.024*
C7 0.69427 (19) 0.8905 (3) 0.93914 (7) 0.0172 (4)
H7 0.6489 1.0099 0.9233 0.021*
C8 0.7330 (2) 0.3780 (3) 1.10016 (8) 0.0238 (4)
H8A 0.6763 0.3397 1.1352 0.036*
H8B 0.8493 0.3718 1.1154 0.036*
H8C 0.7038 0.2906 1.0633 0.036*
C9 0.92278 (19) 0.5941 (2) 0.63394 (7) 0.0125 (3)
C10 1.05374 (18) 0.4757 (2) 0.60954 (7) 0.0122 (4)
C11 1.0197 (2) 0.2936 (3) 0.57978 (7) 0.0160 (3)
H11 0.9117 0.2493 0.5716 0.019*
C12 1.14209 (19) 0.1759 (3) 0.56200 (7) 0.0160 (3)
H12 1.1168 0.0551 0.5416 0.019*
C13 1.30388 (19) 0.2427 (3) 0.57528 (7) 0.0135 (3)
C14 1.33919 (17) 0.4281 (3) 0.60267 (6) 0.0160 (3)
H14 1.4464 0.4749 0.6093 0.019*
C15 1.2158 (2) 0.5421 (3) 0.61986 (7) 0.0148 (3)
H15 1.2406 0.6651 0.6386 0.018*
C16 1.4086 (2) −0.0503 (3) 0.53119 (7) 0.0191 (4)
H16A 1.5118 −0.1095 0.5271 0.029*
H16B 1.3448 −0.0312 0.4880 0.029*
H16C 1.3501 −0.1347 0.5566 0.029*
C17 1.20276 (19) 1.0299 (3) 0.74076 (7) 0.0156 (3)
H17 1.2125 0.9018 0.7261 0.019*
C18 1.34326 (19) 1.1433 (3) 0.75550 (7) 0.0143 (3)
H18 1.4452 1.0910 0.7518 0.017*
C19 1.32986 (18) 1.3358 (2) 0.77577 (7) 0.0119 (3)
C20 1.17472 (17) 1.4047 (3) 0.78314 (6) 0.0132 (3)
H20 1.1614 1.5323 0.7975 0.016*
C21 1.04258 (19) 1.2809 (3) 0.76878 (7) 0.0145 (3)
H21 0.9402 1.3273 0.7746 0.017*
C22 1.47067 (19) 1.4762 (2) 0.78517 (7) 0.0135 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.00979 (9) 0.00942 (10) 0.01397 (8) −0.00058 (10) 0.00201 (6) −0.00009 (9)
O1 0.0127 (5) 0.0116 (6) 0.0158 (5) 0.0014 (5) 0.0036 (4) −0.0003 (4)
O2 0.0120 (6) 0.0131 (6) 0.0190 (5) 0.0013 (5) 0.0042 (4) 0.0016 (5)
O3 0.0236 (7) 0.0243 (8) 0.0170 (5) 0.0001 (6) 0.0068 (5) 0.0039 (5)
O4 0.0115 (5) 0.0136 (6) 0.0223 (5) −0.0021 (5) 0.0046 (4) −0.0018 (5)
O5 0.0133 (5) 0.0123 (6) 0.0191 (5) −0.0025 (5) 0.0051 (4) −0.0027 (5)
O6 0.0133 (5) 0.0146 (7) 0.0201 (5) 0.0021 (5) 0.0033 (4) −0.0031 (5)
O7 0.0144 (6) 0.0106 (6) 0.0237 (5) 0.0000 (5) 0.0057 (4) −0.0008 (5)
O8 0.0124 (6) 0.0125 (7) 0.0192 (5) −0.0017 (5) 0.0029 (4) −0.0006 (5)
O9 0.0139 (6) 0.0125 (7) 0.0246 (6) −0.0031 (5) −0.0029 (5) 0.0033 (5)
N1 0.0124 (6) 0.0120 (7) 0.0137 (5) −0.0005 (6) 0.0024 (5) 0.0007 (5)
N2 0.0111 (6) 0.0087 (9) 0.0324 (7) −0.0007 (6) 0.0029 (5) −0.0019 (7)
C1 0.0066 (7) 0.0138 (8) 0.0178 (7) −0.0038 (6) 0.0000 (6) −0.0006 (6)
C2 0.0121 (7) 0.0141 (9) 0.0153 (6) −0.0031 (7) 0.0010 (5) 0.0003 (6)
C3 0.0148 (8) 0.0194 (10) 0.0174 (7) 0.0026 (7) 0.0031 (6) −0.0007 (7)
C4 0.0178 (8) 0.0183 (10) 0.0202 (7) 0.0026 (7) 0.0015 (6) 0.0033 (7)
C5 0.0148 (8) 0.0226 (10) 0.0139 (6) −0.0037 (7) 0.0019 (6) 0.0004 (6)
C6 0.0211 (9) 0.0204 (10) 0.0201 (7) 0.0019 (7) 0.0076 (6) −0.0029 (7)
C7 0.0174 (7) 0.0140 (11) 0.0206 (7) −0.0004 (7) 0.0042 (6) −0.0006 (6)
C8 0.0236 (9) 0.0289 (13) 0.0188 (7) −0.0002 (8) 0.0030 (6) 0.0080 (7)
C9 0.0140 (8) 0.0123 (9) 0.0112 (6) 0.0002 (6) 0.0017 (6) 0.0016 (6)
C10 0.0117 (7) 0.0137 (10) 0.0115 (6) 0.0007 (6) 0.0025 (5) 0.0023 (5)
C11 0.0116 (8) 0.0175 (9) 0.0189 (7) −0.0026 (7) 0.0025 (6) −0.0010 (7)
C12 0.0167 (8) 0.0138 (9) 0.0174 (7) −0.0025 (7) 0.0029 (6) −0.0037 (6)
C13 0.0150 (8) 0.0143 (9) 0.0116 (6) 0.0008 (7) 0.0031 (5) 0.0004 (6)
C14 0.0126 (6) 0.0170 (8) 0.0187 (6) −0.0038 (9) 0.0034 (5) −0.0018 (8)
C15 0.0175 (8) 0.0120 (9) 0.0151 (6) −0.0023 (7) 0.0031 (6) −0.0033 (6)
C16 0.0222 (8) 0.0158 (10) 0.0191 (6) 0.0021 (8) 0.0035 (6) −0.0044 (7)
C17 0.0151 (8) 0.0119 (9) 0.0198 (7) 0.0013 (7) 0.0030 (6) −0.0024 (6)
C18 0.0101 (7) 0.0135 (9) 0.0200 (7) 0.0021 (7) 0.0047 (6) −0.0011 (6)
C19 0.0121 (7) 0.0126 (8) 0.0116 (6) −0.0016 (6) 0.0031 (5) 0.0008 (6)
C20 0.0139 (7) 0.0089 (10) 0.0175 (6) 0.0032 (7) 0.0048 (5) −0.0019 (6)
C21 0.0122 (8) 0.0142 (9) 0.0178 (7) 0.0008 (7) 0.0047 (6) −0.0010 (6)
C22 0.0136 (7) 0.0136 (10) 0.0145 (6) −0.0018 (6) 0.0052 (5) −0.0022 (5)

Geometric parameters (Å, °)

Co1—O1 2.1338 (11) C6—C5 1.392 (3)
Co1—O2 2.2301 (11) C6—H6 0.9300
Co1—O5 2.0506 (11) C7—C6 1.383 (2)
Co1—O8 2.1394 (12) C7—H7 0.9300
Co1—O9 2.0317 (13) C8—H8A 0.9600
Co1—N1 2.1077 (13) C8—H8B 0.9600
O1—C1 1.276 (2) C8—H8C 0.9600
O2—C1 1.260 (2) C10—C9 1.502 (2)
O3—C5 1.3662 (19) C10—C11 1.389 (2)
O3—C8 1.431 (2) C10—C15 1.395 (2)
O4—C9 1.2729 (19) C11—H11 0.9300
O5—C9 1.258 (2) C12—C11 1.387 (2)
O6—C13 1.3730 (19) C12—C13 1.395 (2)
O6—C16 1.437 (2) C12—H12 0.9300
O7—C22 1.237 (2) C14—C13 1.392 (3)
O8—H81 0.83 (2) C14—C15 1.375 (2)
O8—H82 0.89 (3) C14—H14 0.9300
O9—H91 0.79 (2) C15—H15 0.9300
O9—H92 0.91 (2) C16—H16A 0.9600
N1—C17 1.344 (2) C16—H16B 0.9600
N1—C21 1.342 (2) C16—H16C 0.9600
N2—C22 1.333 (2) C17—C18 1.385 (2)
N2—H2A 0.79 (2) C17—H17 0.9300
N2—H2B 0.91 (2) C18—H18 0.9300
C2—C1 1.489 (2) C19—C18 1.385 (2)
C2—C3 1.387 (2) C19—C20 1.398 (2)
C2—C7 1.398 (2) C20—H20 0.9300
C3—C4 1.392 (2) C21—C20 1.371 (2)
C3—H3 0.9300 C21—H21 0.9300
C4—H4 0.9300 C22—C19 1.493 (2)
C5—C4 1.386 (2)
O1—Co1—O2 60.32 (4) C6—C7—H7 119.8
O1—Co1—O8 88.94 (4) O3—C8—H8A 109.5
O5—Co1—O1 96.83 (4) O3—C8—H8B 109.5
O5—Co1—O2 156.69 (4) O3—C8—H8C 109.5
O5—Co1—O8 92.47 (5) H8A—C8—H8B 109.5
O5—Co1—N1 90.44 (5) H8A—C8—H8C 109.5
O8—Co1—O2 91.64 (5) H8B—C8—H8C 109.5
O9—Co1—O1 153.01 (5) O4—C9—C10 117.72 (14)
O9—Co1—O2 95.22 (5) O5—C9—O4 124.05 (14)
O9—Co1—O5 108.09 (5) O5—C9—C10 118.23 (13)
O9—Co1—O8 79.99 (5) C11—C10—C9 121.43 (14)
O9—Co1—N1 92.80 (5) C11—C10—C15 118.24 (15)
N1—Co1—O1 97.30 (5) C15—C10—C9 120.23 (14)
N1—Co1—O2 88.29 (5) C10—C11—H11 119.1
N1—Co1—O8 172.76 (5) C12—C11—C10 121.90 (15)
C1—O1—Co1 91.92 (10) C12—C11—H11 119.1
C1—O2—Co1 87.97 (10) C11—C12—C13 118.61 (16)
C5—O3—C8 117.25 (14) C11—C12—H12 120.7
C9—O5—Co1 127.62 (10) C13—C12—H12 120.7
C13—O6—C16 118.14 (12) O6—C13—C14 115.31 (13)
Co1—O8—H81 93.8 (15) O6—C13—C12 124.54 (15)
Co1—O8—H82 109.5 (15) C14—C13—C12 120.15 (15)
H81—O8—H82 108 (2) C13—C14—H14 119.9
Co1—O9—H91 117.3 (17) C15—C14—C13 120.10 (14)
Co1—O9—H92 134.2 (12) C15—C14—H14 119.9
H91—O9—H92 108 (2) C10—C15—H15 119.6
C17—N1—Co1 121.84 (11) C14—C15—C10 120.90 (16)
C21—N1—Co1 120.64 (11) C14—C15—H15 119.6
C21—N1—C17 117.40 (14) O6—C16—H16A 109.5
C22—N2—H2A 125.4 (14) O6—C16—H16B 109.5
C22—N2—H2B 118.0 (14) O6—C16—H16C 109.5
H2A—N2—H2B 117 (2) H16A—C16—H16B 109.5
O1—C1—C2 118.41 (15) H16A—C16—H16C 109.5
O2—C1—O1 119.79 (14) H16B—C16—H16C 109.5
O2—C1—C2 121.77 (15) N1—C17—C18 122.89 (16)
C3—C2—C7 118.77 (14) N1—C17—H17 118.6
C3—C2—C1 120.01 (15) C18—C17—H17 118.6
C7—C2—C1 121.09 (15) C17—C18—H18 120.5
C2—C3—C4 121.42 (16) C19—C18—C17 119.09 (15)
C2—C3—H3 119.3 C19—C18—H18 120.5
C4—C3—H3 119.3 C18—C19—C20 118.15 (15)
C3—C4—H4 120.6 C18—C19—C22 122.94 (15)
C5—C4—C3 118.90 (17) C20—C19—C22 118.75 (15)
C5—C4—H4 120.6 C19—C20—H20 120.6
O3—C5—C4 123.71 (17) C21—C20—C19 118.87 (17)
O3—C5—C6 115.79 (15) C21—C20—H20 120.6
C4—C5—C6 120.49 (15) N1—C21—C20 123.53 (15)
C7—C6—C5 119.92 (16) N1—C21—H21 118.2
C7—C6—H6 120.0 C20—C21—H21 118.2
C5—C6—H6 120.0 O7—C22—N2 122.40 (15)
C2—C7—H7 119.8 O7—C22—C19 119.83 (14)
C6—C7—C2 120.36 (16) N2—C22—C19 117.72 (15)
O2—Co1—O1—C1 0.09 (8) C7—C2—C1—O2 10.6 (2)
O5—Co1—O1—C1 175.24 (9) C3—C2—C1—O1 8.3 (2)
O8—Co1—O1—C1 −92.40 (9) C7—C2—C1—O1 −167.51 (14)
O9—Co1—O1—C1 −27.20 (15) C1—C2—C3—C4 −173.46 (15)
N1—Co1—O1—C1 83.91 (9) C7—C2—C3—C4 2.4 (2)
O1—Co1—O2—C1 −0.10 (8) C1—C2—C7—C6 173.09 (15)
O5—Co1—O2—C1 −12.36 (15) C3—C2—C7—C6 −2.8 (2)
O8—Co1—O2—C1 87.75 (9) C2—C3—C4—C5 0.7 (3)
O9—Co1—O2—C1 167.84 (9) O3—C5—C4—C3 175.05 (15)
N1—Co1—O2—C1 −99.50 (9) C6—C5—C4—C3 −3.5 (2)
O1—Co1—O5—C9 60.93 (12) C7—C6—C5—O3 −175.47 (15)
O2—Co1—O5—C9 71.64 (17) C7—C6—C5—C4 3.2 (2)
O8—Co1—O5—C9 −28.29 (12) C2—C7—C6—C5 0.0 (2)
O9—Co1—O5—C9 −108.57 (12) C11—C10—C9—O4 5.9 (2)
N1—Co1—O5—C9 158.34 (12) C11—C10—C9—O5 −174.93 (13)
O1—Co1—N1—C17 75.29 (12) C15—C10—C9—O4 −170.39 (13)
O1—Co1—N1—C21 −108.72 (11) C15—C10—C9—O5 8.8 (2)
O2—Co1—N1—C17 135.07 (12) C9—C10—C11—C12 −174.61 (14)
O2—Co1—N1—C21 −48.93 (11) C15—C10—C11—C12 1.7 (2)
O5—Co1—N1—C17 −21.65 (12) C9—C10—C15—C14 174.66 (14)
O5—Co1—N1—C21 154.35 (11) C11—C10—C15—C14 −1.7 (2)
O9—Co1—N1—C17 −129.79 (12) C13—C12—C11—C10 0.8 (2)
O9—Co1—N1—C21 46.21 (12) C11—C12—C13—O6 175.92 (14)
Co1—O1—C1—O2 −0.17 (14) C11—C12—C13—C14 −3.3 (2)
Co1—O1—C1—C2 177.95 (12) C15—C14—C13—O6 −175.95 (13)
Co1—O2—C1—O1 0.16 (14) C15—C14—C13—C12 3.3 (2)
Co1—O2—C1—C2 −177.89 (13) C13—C14—C15—C10 −0.8 (2)
C8—O3—C5—C4 −8.5 (2) N1—C17—C18—C19 −1.6 (2)
C8—O3—C5—C6 170.10 (14) C20—C19—C18—C17 2.6 (2)
Co1—O5—C9—O4 19.3 (2) C22—C19—C18—C17 −172.69 (13)
Co1—O5—C9—C10 −159.84 (9) C18—C19—C20—C21 −1.3 (2)
C16—O6—C13—C12 5.3 (2) C22—C19—C20—C21 174.22 (13)
C16—O6—C13—C14 −175.44 (13) N1—C21—C20—C19 −1.2 (2)
Co1—N1—C17—C18 175.31 (11) O7—C22—C19—C18 151.80 (15)
C21—N1—C17—C18 −0.8 (2) N2—C22—C19—C18 −25.7 (2)
Co1—N1—C21—C20 −173.91 (11) O7—C22—C19—C20 −23.5 (2)
C17—N1—C21—C20 2.3 (2) N2—C22—C19—C20 158.99 (13)
C3—C2—C1—O2 −173.63 (14)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2A···O2i 0.79 (3) 2.11 (3) 2.877 (2) 164.0 (17)
N2—H2B···O1ii 0.91 (3) 2.16 (3) 3.050 (2) 167 (2)
O8—H81···O4 0.83 (3) 1.84 (3) 2.6577 (17) 167 (3)
O8—H82···O7iii 0.89 (2) 1.86 (3) 2.7427 (16) 172 (2)
O9—H91···O6iv 0.786 (19) 2.078 (19) 2.8384 (16) 163 (2)
O9—H92···O4v 0.91 (3) 1.72 (3) 2.6307 (18) 174.1 (15)
C8—H8A···O7vi 0.96 2.53 3.466 (2) 166
C16—H16B···O4vii 0.96 2.52 3.4752 (18) 171

Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z; (iii) x−1, y−1, z; (iv) x−1, y+1, z; (v) x, y+1, z; (vi) −x+2, y−3/2, −z+2; (vii) −x+2, y−1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2727).

References

  1. Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.
  2. Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  6. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  7. Greenaway, F. T., Pazeshk, A., Cordes, A. W., Noble, M. C. & Sorenson, J. R. J. (1984). Inorg. Chim. Acta, 93, 67–71.
  8. Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009a). Acta Cryst. E65, m1037–m1038. [DOI] [PMC free article] [PubMed]
  9. Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009b). Acta Cryst. E65, m627–m628. [DOI] [PMC free article] [PubMed]
  10. Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009c). Acta Cryst. E65, m651–m652. [DOI] [PMC free article] [PubMed]
  11. Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009d). Acta Cryst. E65, m1365–m1366. [DOI] [PMC free article] [PubMed]
  12. Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr.27, 108–111. [DOI] [PubMed]
  13. Necefoğlu, H., Çimen, E., Tercan, B., Süzen, Y. & Hökelek, T. (2010). Acta Cryst. E66, m392–m393. [DOI] [PMC free article] [PubMed]
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681002194X/cv2727sup1.cif

e-66-0m784-sup1.cif (24.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681002194X/cv2727Isup2.hkl

e-66-0m784-Isup2.hkl (232.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES